Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022			
Course: Strength of Materials Semester: IV Program: B. Tech ASE Time :03 h Course Code: MECH 2012 Max. Marks: Instructions: i) Assume any suitable value for missing data ii) Q1-Q3 are True/False			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	a) Shear stress is zero at neutral axis (2 M) b) Strain is material property while stress not (2 M)	4	CO1
Q2.	a) If bar is subjected to only axial loads, then shear stress is zero for any planes passing through a point. (2M) b) Stiffness of material is independent of its geometric properties. (2M)	4	CO1
Q3.	a) Point of contra-flexure is the position where shear force changes the sign. (2 M) b) An isotropic material has same properties at all points in a materials. (2M)	4	CO1
Q4.	Draw the shear force and bending moment diagram for the beam below.	4	CO 2
Q5.	An aluminum bar of $\mathrm{E}=70 \mathrm{GPa}$, diameter 20 mm is stretched by an axial forces P , causing its diameter to decrease by 0.022 mm . The load P is approximately?	4	CO2
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6.	Steel railroad rails 10 m long are laid with end-to-end clearance of 3 mm at a temperature of $15^{\circ} \mathrm{C}$. (a) At what temperature will the rails just come in contact? (b) What stress would be induced in the rails at that temperature if there were no initial clearance? Use $\alpha=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\mathrm{E}=200 \mathrm{GPa}$.	10	CO3
Q7.	A cantile ver beam is of length 1.5 m , loaded by a concentrated force P at its tip as shown in Fig. below and is of circular cross section ($R=100 \mathrm{~mm}$), having two symmetrically placed longitudinal holes as indicated. The material is titanium alloy, having an allowable working stress in bending of 600 MPa . Determine the maximum allowable value of the vertical force P.	10	CO 2

Q8.	A solid brass bar of diameter $d=30 \mathrm{~mm}$ is subjected to torques T_{1}, as shown in part a of the figure. The allowable shear stress in the brass is 80 MPa . (a) What is the maximum permissible value of the torques T_{1} ? (4 M) (b) If a hole of diameter 15 mm is drilled longitudinally through the bar, as shown in part b of the figure, what is the maximum permissible value of the torques T_{2} ? (3M) (c) What is the percent decrease in torque and the percent decrease in weight due to the hole? (3M) (a)	10	CO 2
Q9.	A steel spherical tank of diameter 1.2 m and wall thickness 50 mm contains compressed air at a pressure of 17 MPa . The tank is constructed of two hemispheres joined by a welded seam (see figure). (a) Estimate the the tensile load f (N per mm of length of weld) carried by the weld? (4 M) (b) Determine the maximum shear stress $\tau_{\text {max }}$ in the wall of the tank? (3M) (c) Calculate the maximum normal strain ε in the wall? (3M) (For steel, assume $\mathrm{E}=200 \mathrm{GPA}$, Poisson ratio $=0.3$.)	10	$\mathrm{CO5}$
	$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \end{gathered}$		
Q10.			

	Draw the shear force and bending moment diagram of the beam shown below. If the beam is of square cross-section of side $a=10 \mathrm{~mm}$, and $\mathrm{E}=110 \mathrm{GPa}$. a) Determine the magnitude of maximum shear force and bending moment. (6M) b) Determine the maximum and minimum bending stress in beam. (7M) c) Determine the maximum shear stress in the beam. (7M) OR Draw the shear force and bending moment diagram of the beam shown below. If the beam is of square cross-section of side $a=10 \mathrm{~mm}, \mathrm{E}=110 \mathrm{GPa}$. a) Determine the magnitude of maximum shear force and bending moment. (6M) b) Determine the maximum and minimum bending stress in beam. (7 M) c) Determine the maximum shear stress in the beam. (7M)	20	CO3
Q11.	Apply the Macaulay's method, determine the deflection equation of the beam, if $\mathrm{M}=100 \mathrm{kNm}, \mathrm{a}=10 \mathrm{~m}, \mathrm{P}=50 \mathrm{kN}$ and $\mathrm{w}=10 \mathrm{kN} / \mathrm{m}$. Determine the deflection and slope of the beam at the tip of the beam in terms of flexural rigidity (EI).	20	CO4

