Name: Enrolment No:			
Course: Mechanics of Vehicle Semester: IV $\begin{array}{ll}\text { Program: B.Tech ADE } & \text { Time }: 03 \mathrm{hr} \\ \text { Course Code: MEAD-2008 } & \text { Max. Marks: } 100\end{array}$ Instructions:			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Draw line diagram of Reverted Gear Train.	5	CO1
Q. 2	Define following terms A) Pitch Circle of Gear B) Pitch Circle of Cam	5	CO1
Q. 3	Balancing of rotating parts are necessary in vehicle, Justify.	5	CO2
Q. 4	Discuss the three types of instantaneous centers for a mechanism.	5	CO2
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Q} \times 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q. 5	What is the significance of degrees of freedom of a kinematic chain when it functions as a mechanism? Give examples.	10	$\mathrm{CO3}$
Q. 6	What is the difference between ideal mechanical advantage and actual mechanical advantage?	10	$\mathrm{CO3}$
Q. 7	In an epicyclic gear of the 'sun and planet' type shown in Figure, the pitch circle diameter of the internally toothed ring is to be 224 mm and the module 4 mm . When the ring D is stationary, the spider A, which carries three planet wheels C of equal size, is to make one revolution in the same sense as the sunwheel B for every five revolutions of the driving spindle carrying the sun wheel B. Determine suitable numbers of teeth for all the wheels	10	CO 2

Q. 8	Explain three types of constrained motions. Illustrate your answer using neat sketches and example.	10	$\mathrm{CO3}$
	OR		
Q. 9	Explain different kinds of kinematic pairs giving example for each one of them.	10	CO 3
SECTION-C(2Qx20M=40 Marks)			
Q 10	A disc cam rotating in a clockwise direction is used to move a reciprocating roller with Uniform acceleration and retardation in a radial path, as given below : A. Outstroke with maximum displacement of 25 mm during 120° of cam rotation, B. Dwell for 60° of cam rotation, C. Return stroke with maximum displacement of 25 mm during 90° of cam rotation, and D. Dwell during remaining 90° of cam rotation. The line of reciprocation of follower passes through the camshaft axis. The maximum radius of cam is 20 mm . If the cam rotates at a uniform speed of $300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. find the maximum velocity and acceleration during outstroke and return stroke. The roller diameter is 8 mm . Draw the profile of the cam when the line of reciprocation of the follower is offset by 20 mm . towards right from the cam shaft axis.	20	CO 4
Q. 11	Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The masses are $12 \mathrm{~kg}, 10 \mathrm{~kg}, 18 \mathrm{~kg}$ and 15 kg respectively and their radii of rotations are $40 \mathrm{~mm}, 50 \mathrm{~mm}, 60 \mathrm{~mm}$ and 30 mm . The angular position of the masses B, C and D are $60^{\circ}, 135^{\circ}$ and 270° from the mass A. Find the magnitude and position of the balancing mass at a radius of 100 mm .	20	CO4
	OR		
Q. 12	Four masses A, B, C and D revolve at equal radii and are equally spaced along a shaft. The mass B is 7 kg and the radii of C and D make angles of 90° and 240°	20	$\mathrm{CO4}$

respectively with the radius of B . Find the magnitude of the masses A, C and D and the angular position of A so that the system may be completely balanced.

