Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Nuclear and Particle Physics Program: BSc (H) Chemistry, Math, Geology Course Code: PHYS2012 Semester: IV Time: 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Enlist four different methods to determine the nuclear radius.	4	CO1
Q 2	Calculate the electric field at the surface of the wire of a proportional counter with a wire radius 0.1 mm and a cylinder radius 1 cm, for a 1500 volt applied between the two.	4	CO3
Q. 3.	Determine the possible gamma ray multipole transitions for $\frac{11^{-i}}{2} \rightarrow \frac{5^{-i}}{2}$	4	CO3
Q.4.	Enlist four properties of nuclear forces.	4	CO1
Q.5.	Radius of Silver nucleus ($Z = 47$) is 7 x 10 ⁻¹⁵ m. Determine the minimum kinetic energy a particle should have to just reach it.	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Describe briefly the principle, construction and working of Geiger Muller Counter.	10	CO4
Q.7	Determine the kinetic energy of alpha particles produced when 238U decays to 234Th, the Q value of the reaction being 4.270 MeV. Also determine the kinetic energy of the recoiling nucleus.	10	CO3
Q.8	Describe in brief the different p-p chains in stellar nucleosynthesis	10	CO4
Q.9	Classify the different known elementary particles based on their spin. OR		
	Determine the strangeness S and the hypercharge Y of a neutral elementary particle whose isotopic spin projection is $+1/2$ and baryon charge is $+1$. Predict the particle also	10	CO5
	SECTION-C		
Q 10	(2Qx20M=40 Marks)a) Explain the principle, construction and functioning of LINAC.b) Protons of 2 MeV energy enter a linear accelerator that has 97	15	C05

	drift tubes connected alternately to a 200 MHz oscillator. The final energy of the protons is 50 MeV. What are the lengths of the second and the last drift tubes.	05	
Q. 11	a) Define impact parameter and obtain an expression for it in terms of scattering angle and the kinetic energy of the incident particle.	15	
	b) A 6 MeV alpha particle is scattered by the nucleus of a mercury atom ($Z = 80$) at 120° . Determine the minimum distance to which the alpha particle approaches the nucleus.	05	
	OR		
	a) Isobars are the nuclides that have same mass number A. Derive a formula for the atomic number of the most stable isobar of a given A and use it to find the most stable isobars of $A = 25$.	10	CO1
	 b) Describe the concept of mass parabola, Obtain expression for atomic number of most stable nuclei among a given set of isobars. 	10	
	isobars.		