Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course:Physical Chemistry IVProgram:BSc (H) Chemistry

Course Code: CHEM-2006

Semester:IVTime: 03 hrs.Max. Marks:100

Instructions: Attempt all the questions.

SECTION A				
(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Calculate the energy associated with (a) one photon; (b) one Einstein of radiation of wavelength 8000 A°. $h = 6.62 \times 10^{-27}$ erg sec; $c = 3 \times 10^{10}$ cm sec ⁻¹ .	4	CO1	
Q2	Calculate the electrode potential of a Ag electrode dipped in a 0.1M solution of AgNO ₃ at 298 K, assuming AgNO ₃ to be completely dissociated. The standard electrode potential of Ag^+/Ag is 0.80V at 298K.	4	CO1	
Q3	The conductance of N/10 AgNO ₃ solution taken in a cell with cell constant 0.9555 cm ⁻¹ is 0.0099 ohm ⁻¹ . Calculate (i) specific conductance; (ii) Equivalent conductance.	4	CO1	
Q4	Outline briefly the advantages of using catalyst, instead of using high temperature to promote chemical reactions.	4	CO1	
Q5	A substance when dissolved in water at 10 ⁻³ M concentration absorbs 10 percent of an incident radiation in a path of 1 cm length. What should be the concentration of the solution in order to absorb 90 percent of the same radiation.	4	CO1	
	SECTION B			
	(4Qx10M= 40 Marks)			
Q 6	The standard potential of the following cell is 0.23V at 15 °C and 0.21 V at 35 °C; Pt I $H_{2(g)}I HCl(_{aq}) I AgCl I Ag_{(s)}$ Calculate ΔS^0 , ΔH^0 for the cell reaction assuming that ΔS^0 , ΔH^0 quantities remains unchanged in the range of 15 °C and 35 °C.	10	CO2	
Q7	Discuss in details the kinetics of Reversible reactions.	10	CO2	
Q8	The rate constant of a second-order reaction is $5.70 \times 10^{-5} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ at 25 °C and 1.64 x 10 ⁻⁴ dm ³ mol ⁻¹ s ⁻¹ at 40 °C. Calculate the activation energy and the Arrhenius pre-exponential factor.	10	CO3	
Q9	 (A) Calculate the number of moles of HCl_(g) produced by the absorption of one joule of radiant energy of wavelength 480 nm in the reaction H_{2(g)} + Cl_{2(g)} → 2HCl_(g) if the quantum yield of the photochemical reaction is 1.0 x 10⁶. (B) Describe and discuss the Jablonski diagram for depicting various photo- 	5 + 5	CO3	
	physical processes.			

	SECTION-C (2Qx20M=40 Marks)		
Q10	(A) Calculate the hydrolysis constant and pH of 0.625 M solution of CH ₃ COONa. $K_a = 1.754 \times 10^{-5}$.		
	(B) Derive Michaelis-Menten equation for Enzyme-Catalyzed Reactions		
	Or	10 + 10	CO2
	Differentiate between (i) Specific conductance and Equivalent conductance (ii) Galvanic cell and Electrolytic cell		
Q11	(A) What is meant by transport number of an ion? How is it determined using Hittorf's method and Moving Boundary method?		
	Or		
	A solution of silver nitrate containing 12.14 g of silver in 50 ml of solution was electrolyzed between platinum electrodes. After electrolysis, 50 ml of the anode solution was found to contain 11.55 g of silver, while 1.25 g of metallic silver was deposited on the cathode. Calculate the transport number of Ag^+ and NO_3^- ions.	10 + 10	CO3
	(B) The decomposition of N_2O_5 to NO_2 and O_2 is first order with a rate constant of 4.8 x 10^{-4} per second at 45 0 C.		
	 (i) if the initial concentration is 1.65 x 10⁻² mol/L, what is the concentration after 825 second? (ii) How long would it take for the concentration of N₂O₅ to decrease to 1.0 X 10⁻² mol/L from its initial value, given in (i)? 		