

SECTION-C(2Qx20M=40 Marks)			
Q 10	A cam, with a minimum radius of 50 mm , rotating clockwise at a uniform speed, is required to give a knife edge follower the motion as described below : 1. To move outwards through 40 mm during 100° rotation of the cam 2. To dwell for next 80° 3. To return to its starting position during next 90°, and 4 . To dwell for the rest period of a revolution i.e. 90°. Draw the profile of the cam (i) when the line of stroke of the follower passes through the centre of the cam shaft, and (ii) when the line of stroke of the follower is off-set by 15 mm . The displacement of the follower is to take place with uniform acceleration and uniform retardation. Determine the maximum velocity and acceleration of the follower when the cam shaft rotates at 900 r.p.m.	20	CO4
Q. 11	Four masses m1, m2, m3 and m4are $200 \mathrm{~kg}, 300 \mathrm{~kg}, 240 \mathrm{~kg}$ and 260 kg respectively. The corresponding radii of rotation are $0.2 \mathrm{~m}, 0.15 \mathrm{~m}, 0.25 \mathrm{~m}$ and 0.3 m respectively and the angles between successive masses are $45^{\circ}, 75^{\circ}$ and 135°. Find the position and magnitude of the balance mass required, if its radius of rotation is 0.2 m .	20	CO4
	OR		
Q. 12	The speed ratio of the reverted gear train, as shown in Fig., is to be 12. The module pitch of gears A and B is 3.125 mm and of gears C and D is 2.5 mm . Calculate the suitable numbers of teeth for the gears. No gear is to have less than 24 teeth.	20	CO4

