Name: Enrolment No:			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
1	Evaluat the expression of the output voltage Vo for the given OPAMP circuit shown in Figure 1? Figure 1	4	$\mathrm{CO3}$
2	Convert the following numbers into the corresponding number system . A. $(88)_{10}=(?)_{16}$ B. $(1101.101100)_{2}=(?)_{16}$ C. $(162)_{8}=10$	4	CO1
3	The overall gain of a multistage amplifier is 140 . When negative voltage feedback is applied, the gain is reduced to 17.5 . Find the fraction of the output that is fedback to the input (feedback gain).	4	CO1
4	Illustrate the applications of the oscillators?	4	CO2
5	Define the "Barkhausen criterion" for sustained oscillations?	4	CO2
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
6	For the given CE BJT configuration as shown in Figure 2, evaluate the DC operating Points ($\mathrm{I}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{CEQ}}$) and also comment on its operating region?	10	CO1

	Figure. 2		
7	Consider the given OPAMP network as shown in Figure. 3 and sketch the Vout waveform with proper explanation and working? Figure. 3	10	CO 2
8	Implement the 16X1 MUX by using 2X1 MUX.	10	CO3
9	Implement the 4 bit up counter by using T flip flop for number of states $=16$. OR Develop a full adder using two half adders. Support your combinational circuit with the help of a truth table?	10	CO 2
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \\ \hline \end{gathered}$		

10	Implement the following Boolean function: $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{AB}+\mathrm{AB}^{\prime} \mathrm{C}$ by using only one MUX with suitable number of inputs.	20	CO 4
11	Derive the relation for frequency of sustained oscillations to design the Wien bridge oscillator for figure 6.. Illustrate the nature of oscillations if $R_{2}=4 R_{1}$ and $R_{2}=0.5$ R_{1}. Draw neat sketch of the waveform for all the cases. Figure. 4 OR Evaluate the following for the given schematic below (Figure .5) (assume hie $=20 \mathrm{k}$) (a) Calculate Zi and Zo . (b) Find Av and Ai. (c) For $\mathrm{Vi}=500 \mathrm{mV} \cdot \sin 250 \mathrm{t}$ plot the output voltage waveform Vo ? Figure. 5	20	CO3

