Name: Enrolment No:			
Course: Robotics and Control Program: B.Tech. Mechatronics Engineering Course Code: ECEG2040 Instructions: Assume any missing data		$\begin{aligned} & \text { Semester: IV } \\ & \text { Time : } 03 \text { hrs. } \\ & \text { Max. Marks: } 100 \end{aligned}$	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Sketch the approximate workspace of the robot shown in Fig. 1 below. Fig. 1: A robot	4	CO1
Q 2	Define robot.	4	CO1
Q 3	Differentiate between forward and inverse kinematics.	4	CO2
Q 4	State various robot characteristics.	4	CO1
Q 5	Discuss the various robot coordinates.	4	CO1
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Suppose we desire to place the origin of the hand frame of a cylindrical robot at $[2,3,5]^{\text {T }}$. Calculate the joint variables of the robot.	10	$\mathrm{CO4}$
Q 7	In a robotic set-up, a camera is attached to the fifth link of a 6-DOF	10	CO3

	robot. It observes an object and determines its frame relative to the camera's frame. Using the following information, determine the necessary motion the end-effector must make to get to the object: $\begin{aligned} & { }^{5} T_{\text {cam }}=\left[\begin{array}{cccc} 0 & 0 & -1 & 3 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{array}\right] ;{ }^{5} T_{H}=\left[\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{array}\right] ; \\ & { }^{c a m} T_{\text {obj }}= \\ & =\left[\begin{array}{cccc} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{array}\right] ;{ }^{H} T_{E}=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{array}\right] \end{aligned}$ Note: (i) ${ }^{i} T_{j}$ refers to transformation from frame $\{i\}$ to frame $\{j\}$. (ii) ' 5 ' stands for 'local frame attached to link 5 of the robot'; 'cam' stands for 'camera'; 'H' stands for 'hand frame'; ‘obj’ stands for 'object', and ' E ' stands for 'end-effector'. (iii) ${ }^{0} \mathrm{~T}_{3}={ }^{0} \mathrm{~T}_{1} \times{ }^{1} \mathrm{~T}_{2} \times{ }^{2} \mathrm{~T}_{3}$		
Q 8	A 5-DOF robot is shown in figure 2. Find the DH parameters for the robot. Figure 2: A 5-DOF robot.	10	CO2

Q9	Derive the relationship between the differential motions of hand frame and differential motions of joints of a two-link articulated planar robot. OR A frame B is rotated 90° about the a-axis, 90° about the y-axis, then translated 2 and 4 units relative to the x - and y-axes respectively, then rotated another 90° about the n-axis. Find the new location and orientation of the frame. $B=\left[\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right]$	10	CO2
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q 10	It is desired to have the third joint of a 6 -axis robot go from an initial angle of 20° to a final angle of 80° in 4 seconds. Calculate the coefficients for a third-order polynomial joint-space trajectory and plot the joint angles, velocities, and accelerations. The robot starts from rest but should have a final velocity of 5% sec.	20	CO3
Q 11	The position and orientation of the end-effector of a spherical manipulator is given by the following transformation matrix. $T=\left[\begin{array}{cccc} 0.354 & 0.866 & 0.354 & 0.106 \\ -0.612 & 0.5 & -0.612 & -0.184 \\ 0.707 & 0 & 0.707 & 0.212 \\ 0 & 0 & 0 & 1 \end{array}\right]$ Find the feasible joint solutions if the joint limits are as follows. $\begin{aligned} & -100^{\circ}<\theta_{1}<100^{\circ} \\ & -30^{\circ}<\theta_{2}<70^{\circ} \\ & 0.05 \mathrm{~m}<d_{3}<0.5 \mathrm{~m} \end{aligned}$ OR Perform the inverse kinematics of a 2-DoF planar robot having two revolute joints. If the length of each $\operatorname{link} \mathrm{L}_{1}$ and L_{2} is 1 ft . and the position and orientation of the end effector is given by matrix ${ }^{0} \mathrm{~T}_{\mathrm{H}}$, calculate the values of joint variables. Check for multiple solutions, if any. ${ }^{0} T_{H}=\left[\begin{array}{cccc} -0.2924 & -0.9563 & 0 & 0.6978 \\ 0.9563 & -0.2924 & 0 & 0.8172 \\ 0 & 0 & 1 & 0.0000 \\ 0 & 0 & 0 & 1 \end{array}\right]$	20	CO4

