Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: Analog System and Application

Semester: IV

Program: B.Sc H (Physics)

Code: PHYS 2006

Time: 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory. Internal choices are given in Q6 and Q10

	SECTION A			
(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	In a fixed-bias CE circuit, for $\beta = 100$,			
	a) I _B increases 100 times as fast as I _{CO} .			
	b) I _B increases 101 times as fast as I _{CO} .	4	CO2	
	c) I _C increases 100 times as fast as I _{CO} .			
	d) I _C increases 101 times as fast as I _{CO} .			
Q2	For an ideal Op-Amp, value of input impedance, output impedance,			
	bandwidth, offset voltage and open loop voltage gain are	4	CO1	
	(a), (b), (c), (d)and (e)respectively.			
Q3	In the region, the junction is reverse-biased and the			
	junction is forward-biased.			
	a) Active; emitter; collector	4	CO1	
	b) Active; collector; emitter	4	COI	
	c) Saturation; emitter; collector			
	d) Cutoff; collector; emitter			
Q4	"In an n-type semiconductor material, the free-electron concentration is			
	the density of donor atoms."			
	a) Greater than	4	CO1	
	b) Less than	4	COI	
	c) Approximately equal to			
	d) Not related with			
Q5	List the basic conditions to be satisfied for faithful amplification.	4	CO1	
	SECTION B		1	
	(4Qx10M= 40 Marks)			
Q6	Write short notes on any two of the following:	10	CO1	
~	(a) Varactor diode			
	(b) Zener diode			
	(c) Solar Cell			
	(d) Light Emitting Diode			

Q7	Draw the circuit diagram and explain the working of a RC coupled transistor amplifier. Also mention its advantages and disadvantages.	10	CO2
Q8	What is bias stabilization and why it is needed? Draw the circuit of a voltage divider bias and explain its advantages over others.	10	CO2
Q9	When negative voltage feedback is applied to an amplifier of gain 100, the overall gain falls to 50. (i) Calculate the fraction of the output voltage feedback. (ii) If this fraction is maintained, calculate the value of the amplifier gain required if the overall gain is to be 75.	10	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q10	With the help of circuit diagrams, graphs and expressions for output explain the working of OP-AMP as (1) Inverting amplifier, (2) Non-inverting amplifier, (3) Differentiator and (4) Integrator. OR (a) Make the circuit diagram of a Colpitt's oscillator and write the expressions of frequency and feedback fraction. What are the drawbacks of L-C based oscillators? (b) Make the circuit diagram of phase shift oscillator, write the expressions for frequency and feedback fraction, and mention its advantages and disadvantages.	20	CO3
Q11	(a) Using Avogadro's number, verify the numerical value given in following Table for the concentration of atoms in germanium (b) Find the resistivity of intrinsic germanium at 300° K .(c) If a donor-type impurity is added to the extent of 1 part in 10^{8} germanium atoms, find the resistivity. (d) If germanium were a monovalent metal, find the ratio of its conductivity to that of the n-type semiconductor in part c. Property Ge Si Atomic number 32 14 Atomic weight 72.6 28.1 Density, g/cm³ 5.32 2.33 Dielectric constant (relative) 16 12 Atoms/cm³ 4.4 × 10²² 5.0 × 10²² E_{00} , eV, at 0° K 0.785 1.21 E_{0} , eV, at 300° K 0.72 1.1 n_i at 300° K, cm⁻³ 2.5 × 10^{13} 1.5 × 10^{10} Intrinsic resistivity at 300° K 3,800 1,300 μ_n , cm²/V-s at 300° K 1,800 500 D_n , cm²/s = $\mu_n V_T$ 99 34 D_p , cm²/s = $\mu_p V_T$ 47 13	20	CO4