Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Chemistry of d-Block Elements... (Generic Elective – III)Semester: IVProgram: B.Sc. (Geology)/ B.Sc. (Maths)Time: 03 hrs.Course Code: CHEM 2007Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly

- 1) Write your name and enrollment no. at the top of the question paper.
- 2) Do not write anything else on the question paper except your name and roll number.
- 3) Attempt all the parts of a question at one place only.
- 4) Internal choices are given for question number 9 and 11.

5) CO1, CO2, CO3 & CO4 in the last column stand for course outcomes and are for official use only.

SECTION A (5Qx4M=20Marks)

S. No.		Mark s	CO
Q 1	 (a) Write the gross selection rule of Vibrational spectroscopy? (b) Identify the IR active molecules with suitable justifications: H2O, N₂, CHCl₃, CO₂, H₂ 	2+2	CO3
Q 2	Write the Schrodinger equation of 1-D simple harmonic oscillator. Explain all the terms involved in the equation.	4	CO3
Q 3	Explain the linkage isomerism and geometric isomerism using examples, as shown by coordination compounds.	4	CO1
Q 4	Write basic postulates of Werner's theory. Explain bonding in coordination compounds in terms of this theory using an example.	4	CO1
Q 5	For each of the following pairs of complexes, identify the one that has the larger CFSE, give the explanation : (a) [Cr(OH ₂) ₆] ² or [Mn(OH ₂) ₆] ² (b) [Fe(OH ₂) ₆] ³ or [Fe(CN) ₆] ³	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Derive the expression of wave function and energy of a particle with mass "m" in one dimensional box of length "L".	10	CO2
Q 7	 (a) The energy of v=2 level of 1D SHO is 500 cm⁻¹, what is the zero point energy? (b) Find the eigen value of the wavefunction e^{-ikx} with an operator	5+5	CO2

Q 8	(a) Explain the structure of [Ni(CO)4] using valence bond theory.(b) Write a note on "Jahn - Teller Effect".	5+5	CO2
Q 9	Using the Latimer diagram of Mn calculate the electrode potential (E°) for the following reaction. $ \frac{MnO_4 + 0.564}{7+6+} \frac{MnO_4^2 + 0.274}{6+} \frac{MnO_4^{3+} + 4.27}{4+} \frac{MnO_2 + 0.95}{3+} \frac{Mn^{3+} + 1.51}{3+2+0} \frac{Mn^{2+} + 1.18}{2+0} $ (a) MnO_4 to Mn^{2+} (b) MnO_4 to MnO_2 OR Write the IUPAC name or the formula of the following complexes: (a) $[Ag(NH_3)_2]Br$ (b) $K_2[Cd(CN)_4]$ (c) $[Co(H_2O)_6] [Ag(CN)_2]_3$ (d) diaquodicyanocopper(II)	10	CO1
	(e) potassium hexachloropalladate(IV)		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	 (a) Using the valence bond theory, predict the type of hybridization involved along with the geometry and calculate the magnetic moment for [Ni(CN)₄] and [MnF₆]³. (b) Write a short note on inner and outer orbital octahedral complexes. 		CO2
Q 11	 (a) The vibration of ¹H⁸⁰Br molecule can be considered as simple harmonic oscillation. The force constant is 500 Nm⁻¹. Calculate the fundamenta vibration frequency and the zero point energy of this molecule. OR Give the expression relating rotational constant B to moment of inertia. If B = 10 cm⁻¹, calculate the rotational energy levels of this molecules for J= 0, 1,2,3 levels. (b) Assume 1,3,butadiene as particle in one dimensional box with L= 0.50 nm. What is the wavelength (nm) of light required for the transition from ground state to the first excited state? Given: mass of electron = 9.1×10⁻³¹ kg, h = 6.626×10⁻³⁴ Js. OR Discuss the origins of spectral broadening. 	10+1	CO3