Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Numerical Methods Semester: IV Program: B.Sc (Hons.) Physics/Chemistry/Geology Course Code: MATH 2017G

Time: 03 hrs. Max. Marks: 100

Instructions:

				TION A =20Marl	ks)					
S. No.							Marks	СО		
Q 1	Find $f(x)$ from the following table below. Also find $f(7)$									
	$\begin{array}{c cccc} x & 0 & 1 \\ \hline f(x) & -1 & 3 \end{array}$	2 19	3 53	4 111	5 199	6 323	4	CO1		
Q 2	Using Lagrange's formula of interpolation, find $y(9.5)$ given									
	$\begin{array}{ c c c c } x & 7 \\ \hline y & 3 \end{array}$	8		9	10 9		4	CO3		
Q 3	Explain the Milne's I	Predictor Cor	rector me	ethod.			4 CO6			
Q 4	Evaluate the integral $\int_{1}^{1.5} e^{-x^2} dx$ using Gaussian quadrature 2-point formula.						4	CO4		
Q 5	Given the following table, find $y(35)$ by using Bessel's formula									
	x 20 y 512	30 439		40 346	50 243		4	CO3		
		(TION B = 40 Mai	rks)					
Q 6	(4Qx10M= 40 Marks)Find the positive root between 3 and 4 correct to three decimal places, by Horner's method, which satisfies the following equation $x^3-2x^2-3x-4=0.$						10	CO2		

Q 7	Evaluate the first and second derivatives of y tabulated below at the point $x=0.6$, by Stirling's method		
	x 0.4 0.5 0.6 0.7 0.8	10	CO4
	y 1.5836494 1.7974426 2.0442376 2.3275054 2.651081		
Q 8	Solve the following system of equations by Gauss-Jacobi method (in four steps)		
	4x+11y-z=33	10	CO5
	6x + 3y + 12z = 35	10	000
	8x - 3y + 2z = 20		
Q 9	Using Taylor's series method, find, correct to four decimal places, the value of $y(0.1)$, $y(0.2)$, given that $\frac{dy}{dx} = x^2 + y^2$ and $y(0) = 1$.	2	
	dx		
	OR	10	CO6
	Solve $y' = y - x^2$, $y(0) = 1$, by Picard's method upto the third approximation. Hence find the value of $y(0.1)$, $y(0.2)$.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Derive the Newton Cote's quadrature formula.		
	Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by (i) Trapezoidal rule (ii) Simpson's one-third rule	20	CO4
	(iii) Weddle's rule.		
Q 11	d_{1} u^{2} u^{2}	/en	
	y(0)=1 at $x=0.2, 0.4$		
	OR	20	CO6
	Solve numerically the equation		
	$\frac{dy}{dx} = x + i\sqrt{y} \vee i \text{ with } y(0) = 1 \text{ for } 0 \le x \le 0.6 \text{ in steps of } 0.2 \text{ using Euler}$'s	
	modified method.		