| Name:
 Enrolment No: |
| :--- | :--- | :--- | :--- |
| Course: Introduction to Fluid Mechanics |
| Program: B Tech Civil Engineering |
| Course Code: CIVL 2006 | | UNIVERSITY OF PETROLEUM AND ENERGY STUDIES |
| :--- |
| Instructions: Attempt all the question |

Q 8	a) Explain the constructional details of Orificemeter. b) What is the percentage error in the estimation of the discharge due to an error of 2% in the measurement of the reading of a differential manometer connected to an orifice meter?	10	CO 3
Q 9	In a vertical pipe conveying oil of specific gravity 0.8 , two pressure gauges have been installed at A and B where the diameters are 16 cm and 8 cm respectively. A is 2 m above B . The pressure gauge readings have been shown that the pressure at B is greater than at A by 0.981 $\mathrm{N} / \mathrm{cm}^{2}$. Neglecting all losses calculate the flow rate. If the gauges at A and B are replaced by tubes filled with the same liquid and connected to a U-tube containing Hg , calculate the difference of level of Hg in the two limbs of the U-tube.	10	CO 3
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	The variable controlling the motion of a floating vessel through water are the drag force F , the speed v , the length 1 , the density ρ. Dynamic viscosity μ of water and gravitational constant g. If the non-dimensional groups are Reynolds number (Re), Weber number (We), Prandtl number (Pr) and Froude number (Fr), find the expression for F .	20	CO4
OR			
Q 10	In order to estimate the energy loss in a pipeline of 4 m diameter through which kerosene of specific gravity 0.6 and dynamic viscosity of 0.01 Poise is to be transported at the rate of 4000 lps , model tests were conducted on a 0.2 m diameter pipe using water at $20^{\circ} \mathrm{C}$. Calculate the discharge required for the model pipe. If the energy head loss in 40 m length of the model pipe is measured 8 m of water, determine the corresponding head loss in the prototype. Also determine the value of Darcy's friction factor for the prototype pipe. Tae the absolute viscosity of water at $20^{\circ} \mathrm{C}$ as $10-2$ poise.	20	CO4
Q 11	A 2-D flow is described by the velocity components, $u=10 x^{3} ; \text { and } \quad v=-10 x^{2} y$ Evaluate the stream functions, velocity and accelerations at the point $\mathrm{P}(2,2)$. Also sketch the steam function.	20	CO2

