Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Atomic, molecular and laser physics Program: Time: 03 hrs. Course Code: PHYS7022

Semester: II Max. Marks: 100

Instructions: • All the questions of section-A are compulsory • Section-B and Section-C have internal choice

SECTION-A (5Qx4M=20Marks)

S. No.		Marks	СО
Q1	A laser beam ($\lambda = 600$ nm) has coherence length L _c = 10 cm, calculate spectral purity ($\Delta\lambda$).	4	CO1
Q2	Tabulate the basic differences between E.S.R and N.M.R.	4	CO1
Q3	Sketch space quantization of total angular momentum vector J for the given state, $4^2 P_{5/2}$	4	CO2
Q4	Differentiate population inversion in 3-level and 4-level laser systems.	4	CO2
Q5	Calculate electric and magnetic field strength of a laser beam whose intensity is 2.5 kW/m ² .	4	CO3
	SECTION-B		
	(4Qx10M= 40 Marks)		
Q6	Calculate loss co-efficient α (dB/KM) for the laser that travels 2 KM. Assume output to input power ratio = 0.5.	10	CO1
Q7	Deduce the expression for magnetic moment (μ) originating due to orbital motion of electron.	10	CO2
Q8	Compare the rotational energy levels separation due to isotopic effect using a neat level diagram.	10	CO2

Q9	A rotational spectrum of diatomic molecule shows 1 st microwave absorption at, $\bar{v} = 3.85 cm^{-1} \wedge 3.68 cm^{-1}$ for ¹² C ¹⁶ O and its isotope ^m C ¹⁶ O. Calculate mass number m.		
	OR	10	CO3
	Energy difference between two consecutive vibrational levels appears to be 400 meV. Compute the corresponding emitted wavenumber.		
	SECTION-C (2Qx20M=40 Marks)		
Q10	(a) A Zeeman splitting occurs at 10 Tesla of magnetic field. Calculate frequency shift, Δv .	10	CO1
	(b) According to Franck-Condon principle depict Morse curve for electronic-vibrational transitions when equilibrium position of upper state is shifted towards high or low, or remains same as that of ground state.	10	CO2
Q11	(a) Analyse the working of Ruby laser with a clear diagram.	10	CO3
	(b) Deduce the relation between the Einstein co-efficient A and B by discussing stimulated absorption, spontaneous emission and stimulated emission.	10	CO3
	OR		
	(a) Discuss 3-level laser system with energy levels. Analyse why the threshold energy required is relatively less than that of 2-level laser	10	CO3
	system?	10	CO3
	(b) Show that to achieve laser the resonant cavity length L must take the form,		
	$L = \frac{1}{2 i i}$		
	where, γ = threshold gain, α =loss coefficient, r ₁ and r ₂ are the reflection co-efficient of partially and 100% reflecting mirrors, respectively.		