Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Robots Simulation Program: M.Tech. Automation and Robotics Engg. Course Code: ECEG7020 Semester: II Time : 03 hrs. Max. Marks: 100

Instructions: Assume any missing data.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	State the different types of robot coordinates.	4	CO1	
Q 2	Discuss the various applications of robots.	4	CO1	
Q 3	Differentiate between forward and inverse kinematic analyses of robots.	4	CO1	
Q 4	Describe the procedure of assigning degrees of freedom to various joints of a robot. Show with reference to a 4-DOF articulated planar manipulator.	4	CO1	
Q 5	Draw the block diagram for a typical closed-loop control system. Discuss the significance of transfer function.	4	CO1	
	SECTION B		1	
	(4Qx10M= 40 Marks)			
Q 6	Develop a MATLAB code for performing inverse kinematic analysis of a spherical robot.			
	OR	10	CO2	
	Develop a MATLAB code for performing inverse kinematic analysis of a cylindrical robot.			
Q 7	It is required to simulate a first-order system using SIMULINK. Draw the block diagram using the blocks available in SIMULINK library browser. Mention the location of each block within the library browser.	10	CO2	
Q 8	Perform the state-space analysis of the differential equation provided below. $5\ddot{y}+8\dot{y}+100y=20x$	10	CO4	
Q 9	Two consecutive frames describe the old (T ₁) and new (T ₂) positions and orientations of the end of a 3-DOF robot. The corresponding Jacobian, relating to dz , δx , δz , is also given. Find values of joint differential motions ds_1 , $d\theta_2$, $d\theta_3$ of the robot that caused the given	10	CO2	

frame change.		
$T_{1} = \begin{bmatrix} 0 & 0 & 1 & 10 \\ 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}; T_{2} = \begin{bmatrix} -0.05 & 0 & 1 & 9.75 \\ 1 & -0.1 & 0.05 & 5.2 \\ 0.1 & 1 & 0 & 3.7 \\ 0 & 0 & 0 & 1 \end{bmatrix};$		
$J = \begin{bmatrix} 5 & 10 & 0 \\ 3 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$		
SECTION-C (2Qx20M=40 Marks)		
Q 10 Derive the relationship between velocity of joint frame and velocity of hand frame for a two-link planar articulated robot.	20	CO4
Q 11 For the 3-DOF-manipulator arm shown in Fig. 1, assign frames and obtain the joint-link parameters. Perform the inverse kinematic analysis.	20	CO3
OR		
The dynamic equations for a 2-DoF manipulator are-		
$\tau_1 = m_1 L_1^2 \ddot{\theta}_1 + m_2 L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 + B_1 \dot{\theta}_1$		
$\tau_2 = m_2 L_2^2 (\ddot{\theta}_1 + \ddot{\theta}_2) + B_2 \dot{\theta}_2 + m_2 g L_1 \cos \theta_1$		
Design a proportional-derivative based closed-loop control system for the system.		