Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

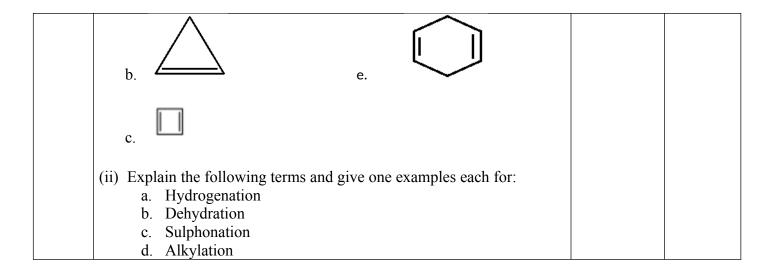
Course: Organic Chemistry I

Program: B.Sc. (H) Chemistry

Course Code: CHEM 1005

Semester: II

Time : 03 hrs.


Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Classify the given species into Electrophile or Nucleophile Cl, NO ₂ , NH ₃ , BF ₃	4	CO1
Q 2	Assign E and Z notations in the following compounds: $HO = C = C = CI \\ HS = C = C = CH_3 \\ CH_3 = CH_3 = CH_3 \\ CH_3 = CH_2 = CH_2 \\ CH_2 = CH_2 = CH_2 \\ CH_2 = CH_2 \\ CH_3 = CH_3 \\ $	4	CO1
Q 3	Assign R/S nomenclature $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4	CO1

	CH₂OH CH=CH2		
	Br—H OHC—H		
	h CH ₂ COCH ₃ d. CH ₂ COCl		
Q 4	b. CH ₂ COCH ₃ d. CH ₂ COCI Discuss the optical isomerism in tartaric acid.		G04
	•	4	CO1
Q 5	Complete the reactions: $a \cdot CH_2Br - CH_2Br Zn dust$		
	b. C ₂ H ₅ COONa NaOH /CaO	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Which type of reactions are the characteristic reactions of aromatic	10	CO3
Q 7	compounds. Explain the mechanism of halogenation of benzene. What happens when		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	a. Toluene is oxidized with alkaline KMnO ₄ .		
	b. Acetylene is passed through red hot iron tube.	10	CO2
	c. Cyclopropane reacts with HBr.		
Q 8	d. Propyne reacts with ammonical solution of AgNO ₃ . Discuss Baeyer Strain theory for the stability of cycloalkanes.	40	604
	, , , , ,	10	CO1
Q 9	Explain why a. Benzene contains three double bonds still undergoes substitution		
	reactions rather than addition reactions.	3+3+4	CO2
	b. Acetylene reacts with strong alkali metals like sodium.		
	c. Aniline is weakly basic in nature.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Conversion		
	a. Propyne to 2-butyne		
	b. Acetylene to mesitylene	20	CO2
	c. Acetylene to toluene d. Acetylene to acetone		
	d. Acceptance to acceptance	10 + 10	CO2
Q 11	(i) Classify the following compounds into aromatic, anti-aromatic and non-aromatic category with proper justification:		
	⊕		
	a. d.		

