
Name: Enrolm	me: rolment No: UNIVERSITY WITH A PURPOSE					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022						
Course Course Nos. of Instruc	Program Name: M Tech Chemical EngineeringSemesterCourse Name: Advanced Process ControlTimeCourse Code: CHPD 7013Max. MarkNos. of page(s): 03nstructions: Assume any missing data. Draw the diagrams, wherever necessary. Write name on any additional sheet that you use.					
	SECTION A (6X10=60 marks)					
S. No.		Marks	CO			
1	<i>Outline</i> the static and dynamic characteristics of instruments.	10	C01			
2	<i>List</i> out different types of sensors with examples	10	CO1			
3	A tank having a cross-sectional area of 2 ft ² is operating at steady state with an inle flow rate of 2.0 cfm. The flow-head characteristics are shown in figure below. Find the transfer function H(s)IQ(s). If the flow to the tank increases from 2.0 to 2.2 cfm according to a step change, <i>indicate</i> the level h two minutes after the change occurs.		CO2			
4	Consider the stirred-tank reactor shown in given figure. The reaction occurring is $A B$ and it proceeds at a rate $r = kC_o$ where $r = moles A$ reacting/(volume)(time) k = reaction velocity constant $C_i(t) = concentration of A in reactor, moles/volume$ V = volume of mixture in reactor Further let $F = constant$ feed rate, volume/time Ci(t) = concentration of A in feed stream. Assuming constant density and constant V, describe the transfer function relating the concentration in the reactor to the feed-steam concentration.	10	CO2			

	$\begin{array}{c} C_i, F \\ \hline \\ Volume V \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
5	A proportional derivative controller with a second order transfer function (τ =1, ξ =2) connected in a feed back loop having measuring element of no dynamic lag, <i>examine</i> the offset, when the set point is given a unit step function.	10	CO3
6	 a) A process of unknown transfer function is subjected to a unit-impulse input. The output of the process is measured accurately and is found to be represented by the function y(t) = te-t. <i>Calculate</i> the unit-step response of this process. b) For a control system, the characteristics equation is s⁴+4s³+6s²+4s+(1+K) = 0 <i>Demonstrate</i> value of k above which the system is unstable. Determine the value of k for which the two of the roots are on the imaginary axis, and determine the values of these imaginary roots and remaining roots are real. 	10	CO4
	SECTION B		1
7	Given the control diagram shown below, <i>analyze</i> by means of the Routh criterion those values of τ_1 for which the output C is stable for all inputs R and U. $R \xrightarrow{1}{\tau_1} \xrightarrow{1}{\tau_2} \xrightarrow{1}{\tau_1} \xrightarrow{1}{\tau_2} \xrightarrow{1}{\tau_3 s+1} \xrightarrow{r_3 s+1} C$	20	CO3
	OR Plot the bode <i>diagram</i> for the following control loop and evaluate the tuning parameters using Ziegler and Nichols control settings.		

