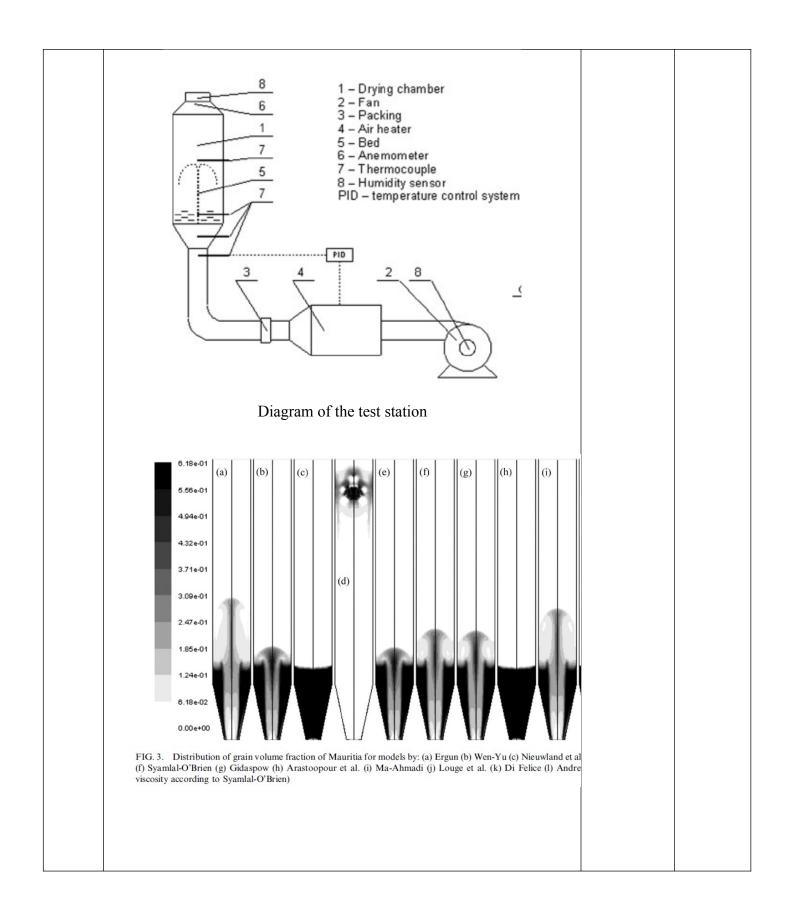
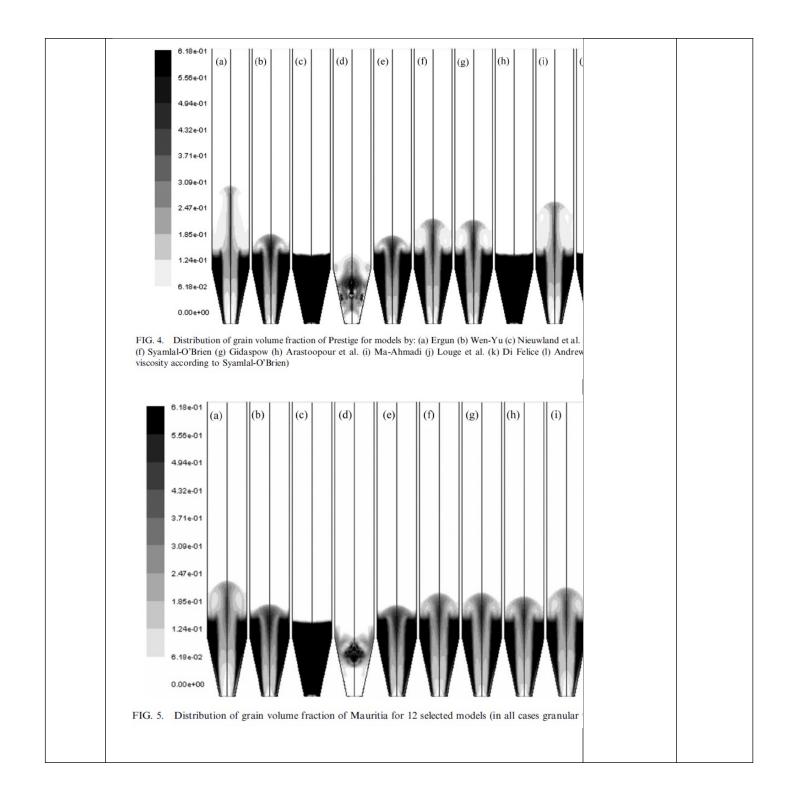
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022


Course: Numerical Methods for Multiphase flows Program: M.Tech CFD Course Code: ASEG 7028


Semester: II Time : 03 hrs. Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Explain about Disperse Phase Separated flows in solid-liquid flows modelling.	4	C01	
Q 2	Explain about Quality, Concentration and Loading in two phase flows	4	CO3	
Q 3	Describe the expressions and significance of Relative (Slip) Velocity and the Drift Velocity.	4	CO 2	
Q 4	Explain about slug and plug flow patterns, how these flows can be identified on flow pattern.	4	CO 2	
Q 5	Explain about open channel flow modeling and significance of upstream boundary conditions.	4	CO 1	
	SECTION B			
Q 6	(4Qx10M= 40 Marks) Explain about horizontal flow patterns using effective schematic			
QO	diagrams, draw flow pattern graph for both the configurations ? Also explain about effect of turbulence on flow resigns?	10	СО3	
Q 7	Explain about Response time and derive the expressions for Thermal response time and momentum response time.	10	CO 2	
Q 8	Explain about phase coupling and derive expressions for Momentum and Mass coupling for various phases?	10	CO 1	
Q 9	Derive Individual phase momentum equation and Continuous phase	10	CO 3	

	momentum equation for two- fluid approach			
SECTION-C (2Qx20M=40 Marks)				
Q 10	Derive the expression for pressure drop in a horizontal pipe where water and			
	gas is injected using homogenous model with no slip condition.	20	CO 4	
Q 11	Consider the Momentum Exchange in Solid–Fluid System Modeling with the	20	CO 5	
	Eulerian Multiphase Model. In this work results of spouted bed grain dryer			
	simulation tests where barley grain was the working medium and analyses the			
	influence of the model describing momentum exchange between components			
	of the fluid-solid type mix on the dynamics of the fluidized bed and height of			
	the fountain characteristic for that type of devices. The Eulerian multiphase			
	model (EMM), in which the model describing the interphase momentum			
	exchange was changed, while other conditions were constant, was the base of			
	the simulation. The computations were made using the FLUENT software			
	package and the so-called user-defined functions. Verification of correctness			
	of implementation of those models (for the models for which it was possible);			
	presentation of the object of study (simulation tests were based on earlier			
	made experimental tests); results of simulations for 12 resistance models and			
	two granular viscosity models and considerations on selection of the resistance			
	model in the context of a spouted bed grain dryer.			
	Answer the following questions based on the plots provided below (20 Marks)			
	1. Explain the experimental setup from the given schematic diagram and			
	create a computation domain from the system and explain the			
	modeling and meshing methods?			
	2. Explain the variation of grain volume fraction for different models			
	based on the plot given below?			
	3. Choose one of the best model from the following results and explain			
	the merits and demerits across other models?			
	4. Explain the Challenges in Fluid Solid Flow modelling in ANSYS			
	Fluent.			

