Name: Enrolment No:			
Course: Supersonic and Hypersonic Flows Semester: II Program: M.Tech CFD Time 03 hrs. Course Code: ASEG 7034P Max. Marks: $\mathbf{1 0 0}$ Instructions: Gas tables will be provided during the examination.			
SECTION A			
S. No.		Marks	CO
Q1.	Discuss the change of flow properties across an expansion fan.	4	CO1
Q2.	Emphasis the design features of a supercritical airfoil.	4	CO2
Q3.	Define adiabatic flow. Is total pressure remains constant in an adiabatic flow?	4	CO3
Q4.	Discuss the interaction of two shock waves.	4	CO4
Q5.	Determine the highest density ratio that can be achieve behind a normal shock wave.	4	CO5
SECTION B			
Q6.	Discuss the aerothermodynamics properties of hypersonic flow.	10	CO1
Q7.	Derive basic potential equation for compressible flow and discuss its advantages. OR Derive linearized form of velocity potential equation by applying small perturbation theory.	10	CO 2
Q8.	Discuss about drag divergence mach number. How it can be delayed using Whitcomb's area rule.	10	CO3
Q9.	A Mach 1.5 flow with at standard sea level is expanded around a sharp corner through a deflection angle of 15^{0}. Calculate $\mathrm{M}_{2}, \mathrm{p}_{2}, \mathrm{~T}_{2}, \mathrm{p}_{0,2}, \mathrm{~T}_{0,2}$, and the angles that the forward and rearward Mach lines make with respect to the upstream flow direction.	10	CO 3
SECTION-C			
Q 10.	Consider a Mach 3 flow at sea level conditions, the flow is deflected due to a compression corner with a deflection angle of 15°. The shock wave reflected from a straight horizontal wall that is present above the corner. Calculate Mach number, pressure and temperature behind the reflected shock from the upper wall. Also, obtain the angle (φ), which the reflected shock makes with the upper wall. OR A supersonic flow at $\mathrm{M}_{1}=3, \mathrm{~T}_{1}=285 \mathrm{~K}$, and $\mathrm{p}_{1}=1 \mathrm{~atm}$ is deflected upward through a compression corner with $\theta=30.6^{\circ}$ and then is subsequently expanded around a corner of the same angle such that the flow direction is the same as its original direction. Calculate $\mathrm{M}_{3}, \mathrm{p}_{3}$, and T_{3} downstream of the expansion corner	20	CO4

Q11.	Consider an infinitely thin flat plate at an angle of attack α in a Mach 3 flow. Calculate the lift and wave-drag coefficients for i. $\quad \alpha=5^{0}$ ii. $\quad \alpha=15^{0}$	$\mathbf{2 0}$	CO5

