Name:

**Enrolment No:** 



UNIVERSITY WITH A PURPOSE

## **UNIVERSITY OF PETROLEUM AND ENERGY STUDIES** End Semester Examination, April – May, 22

## **Course: Incompressible Aerodynamics** Program: M.Tech CFD **Course Code: ASEG 7035P**

Semester: IV Time 03 hrs. Max. Marks: 100

|        | SECTION A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |     |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| S. No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks | СО  |
| Q1.    | In low-speed, incompressible flow, the following experimental data are obtained for an airfoil section at an angle of attack of 4°: $c_l = 0.8$ and $c_{m,c/4} = -0.088$ . Calculate the location of the center of pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4     | CO1 |
| Q2.    | Discuss the differences between aerodynamic center and centre of pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4     | CO2 |
| Q3.    | Show that stream function and potential function are perpendicular to each other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4     | CO3 |
| Q4.    | Define vorticity, circulation and angular velocity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4     | CO4 |
| Q5.    | Discuss about the pitot static tube working principle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4     | CO5 |
|        | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L     |     |
| Q6.    | Derive the drag coefficient for flat plate using coefficient of pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10    | CO1 |
| Q7     | Using substantial derivative, derive the continuity equation, also discuss the assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10    | CO2 |
| Q8     | Discuss doublet flow and derive the expression of stream function for the same.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10    | CO2 |
| Q9     | Derive momentum equation for x and y direction of fluid flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10    | CO5 |
|        | SECTION-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |     |
| Q 10   | Derive stream function for uniform, source and sink flow. Superimpose these elementary flow to model flow over Rankine oval and hence find out following for the resulting flow: <ol> <li>Radial and tangential velocities</li> <li>Location of stagnation point</li> <li>Equation of streamline passing through stagnation point.</li> </ol> <li>OR</li> <li>Generate mathematical model for lifting flow over circular cylinder by superimposing elementary flows. Find out following for the resulting flow:         <ol> <li>Stream function and velocity potential function</li> <li>Radial and tangential velocities</li> <li>Location of stagnation point</li> </ol> </li> | 20    | CO3 |
| Q 11   | Derive the energy equation for a moving fluid element. Derive integral and PDE form both.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20    | CO4 |

## **SECTION A**