Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Advanced Reservoir Engineering

Program: M.Tech. Petroleum Engineering

Course Code: PEAU 7017

Semester: 2nd

Time : 03 hrs.

Max. Marks: 100

Instructions: Assume if any data missing.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Classify and discuss aquifer on the basis of outer boundary conditions.	4	CO1
Q 2	Calculate the water influx rate e_w in a reservoir whose pressure is stabilized at 3000 psi. Data given: Initial reservoir pressure = 3500 psi, $dN_p/dt = 32,000 \ STB/day$, $B_o = 1.4 \ bbl/STB$, $GOR = 900 \ scf/STB$, $R_s = 700 \ scf/STB$, $B_g = 0.00082 \ bbl/scf$ $dW_p/dt = 0$, $B_w = 1.0 \ bbl/STB$	4	CO1
Q 3	Explain the direct line drive and staggered line drive flooding patterns.	4	CO2
Q 4	Discuss the five spot and nine spot flooding patterns with suitable diagrams.	4	CO2
Q 5	Elaborate the crestal and basal injection flooding patterns with the help of diagrams.	4	CO2
	SECTION R		

SECTION B (4Qx10M= 40 Marks)

	(4QXIVVI— 40 Marks)			
Q 6	The pressure history of a water-drive oil reservoir is given below:			
	t (days) p (psi)			
	0 3000			
	100 3450			
	200 3410	10	CO1	
	300 3380	10	COI	
	400 3340			
	The aquifer is under a steady-state flowing condition with an estima	ited		
	water influx constant of 130 bbl/day/psi. Calculate the cumulative wa	ater		
	influx after 100, 200, 300, and 400 days using the steady-state model			
Q 7	Derive the fractional flow equation for immiscible fluids with suita	ble	10 002	
	assumptions.	10	CO2	
Q 8	Differentiate between the instantaneous GOR, solution GOR a	and 10	CO3	
	cumulative GOR.	10	CO3	

Q 9	With the help of flomanagement process.	owchart, briefly expla	in the modern reservoir	10	CO4
	munugement process.	SECTIO			
Q 10	(2Qx20M=40 Marks) A volumetric depletion-drive reservoir exists at its bubble-point pressure of 3000 psi. Detailed fluid property data are listed by Craft and his coauthors and given here at only two pressures.				
		$\begin{array}{c} p_b = 3000 \text{ psi} \\ 1.498 \\ 721 \\ 0.001048 \\ 0.488 \\ 0.0170 \\ 0.00018 \\ 0.00328 \\ 0.00045 \\ \end{array}$ and information is availant information informa	p = 2700 psi 1.463 669 0.001155 0.539 0.0166 0.00021 0.00380 0.00050 ble:	20	CO3
	S _g 0.10 0.20 0.30 0.50 0.55 0.57 Calculate the cumulati	ve oil production for a p	K _{rg} /k _{ro} 0.010 0.065 0.200 2.000 3.000 5.000 pressure drop of 300 psi,		
Q 11	i.e., at 2700 psi. Throughout the life of a reservoir, from exploration to abandonment, an enormous amount of data are required. Listed them and explain with the help of flowchart. OR With the help of flowchart, step by step explain the reservoir life process.				CO4