Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Renewable Energy Technologies Program: M.Tech. – ES & SE Course Code: EPEC 7030 Semester: II Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions

S. No.	SECTION A	Marks	СО
Q 1	Briefly explain the reasons for variation in solar radiation reaching the Earth received at the outside of the atmosphere.	4	CO1
Q 2	Explain the working of 'two-pass air heater with porous medium' with help of diagram.	4	CO2
Q 3	Discuss solid substances for sensible heat storage with their temperature range.	4	CO2
Q 4	Comment on the possibilities of hydrogen as potential energy carrier in future.	4	CO3
Q 5	Comment on environmental effect of fuel cells.	4	CO4
	SECTION B		
Q 6	Explain biophotolysis method of production of hydrogen.	10	CO3
Q 7	Discuss various conversion technologies of hydrogen to useful applications	10	CO3
Q 8	Explain the principle of operation Solid oxide fuel cell with help of diagram. OR	10	CO4
	Explain the principle of operation Alkaline fuel cell with help of diagram.		

Q 9	Draw a conceptual block diagram of a fuel cell power plant and explain the details of each block.	10	CO4
	SECTION-C		
Q 10	 a) Draw and explain an equivalent circuit of a practical solar PV cell. b) Calculate the monthly average hourly radiation falling on a flat-plate collector facing south (γ = 0°) with a slope of 15°, given the following data Location: Chennai (13°00°N), 	10+10	CO1
	Month: October, Time:1100 - 1200 h (LAT), Ig:2408 kJ/m ² -h, Id:1073 kJ/m ² -h Assume ground reflectivity to be 0.2.		
Q 11	Describe followings for a thermochemical storage for a solar application c) Criteria used for judging the suitability of a thermochemical reaction d) Schematic representation of a thermochemical reaction e) Thermochemical storage reactions, temperatures of forward and reverse reaction and energy stored OR	6+7+7	CO2
	 As per IS 12933 of testing procedure of liquid solar flat plate collector, explain: a) Testing setup with help of diagram b) Principle measurement c) Consideration of steady state conditions 		