N	am	۵.
TA	am	e.

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: M. Tech Automation and Robotics

Program: Robotics Control System

Course Code: ECEG 7006

Semester: II Time: 03 hrs.

Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	What do you understand by feedback control system.	4	CO1
Q2	What are the actuator nonlinearities.	4	CO1
Q3	What do you understand by set point control.	4	CO2
Q4	What are the objectives in the design of control system.? Differentiate between regulation and tracking of a system?	4	CO2
Q 5	Differentiate between autonomous and non autonomous system with some example	4	CO3
	SECTION B (4Qx10M= 40 Marks)		
Q 6	The characteristics equation of a system in differential form is $\ddot{x} - (K+2)\dot{x} + (2K+10)x = 0$ Find the values of K for which the system is (i) stable (ii) limited stable and (iii) unstable	10	СО3

Q 7	For single link manipulator as shown in fig, obtain the modeling in sate space format.	10	CO4
Q 8	How fuzzy logic controller is differentiated form PID Controller. Explain with the closed loop controller diagram.	10	CO4
Q 9	Given the unity feedback control system with $G(s) = \frac{K}{s(s+a)}$ Find the value of K and a to yield K_r (velocity constant) and 20 % peak overshoot. OR For the following scalar nonlinear function $\dot{x} = -x^3 + u$ using Lyapunov approach comment on the stability?	10	CO2
	SECTION C (2Qx20M= 40 Marks)		'
Q 10	Consider a dynamical system that consists of a cart with an inverted pendulum attached to it as depicted in figure 3.	20	CO1
	(i)Write the Lagrange equation of motion for the system.		
	(ii)Represent the obtained model in the state space format using the state variables		
	$X_1=X,$ $X_2=\dot{x},$ $X_3=\theta,$ $X_4=\dot{\theta}$		

	Distance x $\theta = 1 \text{ kg}$ $g = 10 \text{ m/sec}^2$ Force u $M = 10 \text{ kg}$ Frictionless surface		
Q 11	What do you understand by fuzzy logic control? Explain the working of fuzzy PI controller. Explain the generalized robot manipulator equation	20	
	and their properties. Obtain the derivation for position control of robot		
	manipulator?		
	OR		CO4
	Given a dynamical system described by $\dot{x} = ax + b\cos(x) + u$ where $a, b \in R$ are known constants (assume $a = 2$, $b = 5$). Design a robust controller to achieve tracking control $x \rightarrow x_d$		