Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Fundaments of Materials Science Program: M.Sc. (Physics) Course Code: PHYS-7023

Semester: II Time: 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО		
Q 1	1.1 What are the different types of possible bonding to form a compound?	2	CO1		
	1.2 What type(s) of bonding would be expected for each of the following materials: NaCl, CaF ₂ , SiC, Au, Ar, HF, and H ₂ O?	2	CO1		
Q 2	2.1 Specify coordinate indices for all numbered points (<i>i.e.</i> , 1 to 9) of the unit cell in the illustration: Point 1 is located at the origin of the coordinate system, and, therefore, its lattice position indices referenced to the x , y , and z axes are $0a$, $0b$, and $0c$, respectively.	2			
	Point Number q r s 1 2 3 4 5 6 7 8 9 2.2 Sketch the Miller planes: (100), (010), (110), and (111).	2	CO1		

Q 10	Explain order and disorder, explain the ordered and disordered	20	CO2
	SECTION-C (2Qx20M=40 Marks)		
	What is Weidemann–Franz law for metals? A piece of copper originally 305 mm (12 in.) long is pulled in tension with a stress of 276 MPa (40,000 psi). If the deformation is entirely elastic, what will be the resultant elongation? The modulus of elasticity is 110 GPa (16×10^6 psi)	10	CO3
Q 9	What is the reason for thermal expansion? Explain with the help of atomic perspective and plot of potential energy versus interatomic distance curve for solid material. Or		
Q 8	 8.1 When light impinges on a sheet of thickness t, what are different phenomenon that takes place, explain with the help of sketch. Write a relation for transmitted intensity I_T and explain the parameters. 8.2 What is the visible range (wavelength) in the electromagnetic spectrum? Calculate minimum and maximum possible band gap energy value for absorption of visible light by valence band-to-conduction band transition. 	6	CO4
Q 7	a. What is solid solution? State the Hume-Rothery rule?b. What are crystal imperfections and their types? What are point defects in metals and ceramics? What are dislocations?	5 5	CO2
	 6.2 The atomic radii of K⁺ and Br⁻ ions are 0.138 and 0.196 nm, respectively. a. Calculate the force of attraction between these two ions at their equilibrium interionic separation (i.e., when the ions just touch one another). b. What is the force of repulsion at this same separation distance? 	5	CO1
Q 6	 6.1 Compute the average atomic weight for Cerium: Cerium has four naturally occurring isotopes: 0.185% of ¹³⁶Ce, with an atomic weight of 135.907 amu; 0.251% of ¹³⁸Ce, with an atomic weight of 137.906 amu; 88.450% of ¹⁴⁰Ce, with an atomic weight of 139.905 amu; and 11.114% of ¹⁴²Ce, with an atomic weight of 141.909 amu. Calculate the average atomic weight of Ce (in amu). 	5	CO1
	SECTION B (4Qx10M= 40 Marks)		
Q 5	Explain heat capacity, thermal expansion and thermal conductivity?	4	CO3
Q 4	Describe the conductors, semiconductors and insulators using energy band diagram?	4	CO4
Q 3	Define stress and strain? Draw a plot of stress-strain indicating the elastic deformation for loading and unloading cycles.	4	CO3

	condition or transformation for Cu-Zn alloy (BCC system), and explain with the derivation to justify the difference.		
Q 11	Explain Binary Isomorphous Systems, how to interpret the phase diagram, what are the steps required to know the information available in the phase diagram?		
	Or	20	CO2
	What do you understand from Binary Eutectic Systems? Explain it in brief using Cu-Ag phase diagram. Explain the eutectic reaction and its significance.		