Name:

Enrolment No:

Semester : II

Max. Marks: 100

Time

: 03:00 hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Programma	Nama MSc	(Potroloum	Geosciences)
rrogramme	Traine: MI.SC	(retroieum	Geosciences)

Course Name : Hydrogeology

Course Code : PEGS 7026

Nos. of page(s) : 1

Instructions: Draw sketches if required

SECTION A (5Qx4M=20Marks) (Attempt all questions)

	(Attempt all questions)		
S. No.		Marks	СО
Q 1 Define perched aquifer.		4	CO2
Q2 Differentiate between water table and potentiometric surface.		4	CO1
Q3 Describe different combinations of homogeneity and anisotropy in terms of hydraulic conductivity values.		4	CO2
Q4 Define groundwater mining.		4	CO3
Q5	5 Describe water balance equation in water shed scale.		CO1
	SECTION B		
	(4Qx10M= 40 Marks)		
	(Attempt question 6, 7, 8 and any one of the question 9)		
Q 6	Describe different methods of groundwater exploration.	10	CO2
Q7	27 Illustrate the importance of fixing datum in groundwater survey.		CO3
Q8	Describe the working principal of falling head permeameter.		CO2
Q9	Derive the equation of calculating specific discharge. Or Derive the governing expression of constant head permeameter to calculate hydraulic conductivity.		CO3
	SECTION-C (2Qx20M=40 Marks)		
	(Attempt question 10 and any one of the question 11)		
Q 10	Considering a three layer horizontal earth model different hydraulic conductivity values are found to be 2.3meter/hour, 1.2 meter/hour and 0.6meter/hour. Calculate layer parallel and layer perpendicular equivalent hydraulic conductivity. Consider thickness of the layers are	20	CO2

	0.85meter, 1.6meter and 2.8meter respectively.			
Q11	Define flow net and derive the expression of calculating total flow in			
	the cross section of an aquifer.			
	Or	20	CO4	
	Define cone of depression illustrating the parameters that govern the			
	extent of cone of depression.			