Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022 **QUANTUM MECHANICS II**

Course: **Program:**

M.Sc PHYSICS Course Code: PHYS 7018

Semester : II : 03 hrs. Time Max. Marks : 100

Instructions:

	SECTION A			
(5Qx4M= 20 Marks)				
S. No.		Marks	СО	
Q 1	What is the significance of Eigen values and Eigen vectors in Quantum Physics?	4	CO1	
Q 2	What is a Projection operator?	4	CO1	
Q 3	Exchange interaction is yet another altogether 'Quantum' entity. What is it?	4	CO2	
Q 4	What are Hermitian operators? Give their significance in Quantum Physics.	2+2	CO1	
Q 5	What is linear independence of basis vectors? Use mathematical expression(s) for clarity.	4	CO1	
	SECTION B			
	(4Qx10M= 40 Marks)			
Q 6	Are Fermions and Bosons distinguishable? Explain.	10	CO4	
Q 7	Appraise the principle behind WKB approximation used in Quantum Physics.	10	CO2	
Q 8	What are the different types of reference frames considered in a scattering experiment? Compare them.	10	CO3	
Q 9	Elaborate on Anti-Symmetric wave functions.			
	OR	10	CO4	
	Write a short note on Dirac equations.			
	SECTION-C		1	
	(2Qx20M=40 Marks)			
Q 10	Define a) Differential scattering cross section, b) total scattering cross section, and c) scattering amplitude, with proper notations.	9+11	CO3	
	Solve scattering of a particle with another quantum mechanically and obtain an expression for the scattering amplitude.			

	OR		
	Consider the scattering to be happening at low energy and obtain the above required quantity by the method of partial waves.		
Q 11	What is Stark effect? If the energy levels of the atom are known, derive/adopt a method and evaluate the new energy levels of an atom showng this effect.	4+16	CO1