Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: Ore & Mining Geology
Program: M.Sc Petroleum Geoscience
Course Code: PEGS 7015
Semester: II
Time : 03 hrs.
Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО		
Q 1	Discuss the various sources of hydrothermal fluid in increasing order of importance	04	CO1		
Q 2	Differentiate between PL & RP	04	CO2		
Q 3	 i. Kimberlite deposits are examples of deposit ii. In an open pit mine, line joining bottom most toe & top most crest forms iii. Probable reseve is a part ofreserve iv. Identification based on physical & chemical properies known as 	04	CO1		
Q 4	 i. Reserve ready for immediate exploitation is termed as ii. Placer mining is otherwise known as iii. Vertical access from top to bottom in Underground mine is known as iv. Bauxite is an example of deposit 	04	CO1		
Q 5	Mark True/ False i. Fixed cost remains same throughout the entire operation cycle ii. Commissioning stage is followed by start-up stage iii. Placer deposits can be of residual origin iv. Error in estimating the Probable reserve is 30-50%	04	CO1		
	SECTION B				
	(4Qx10M= 40 Marks)				
Q 6	Analyse the role of scale and how will it differ for a) Reconnaissance, b) Prospecting, c) General Exploration and d) Detailed Exploration?				
Q 7	 i. Does carbonization is related to coal maturity, if yes, how? ii. Establish the interdependency between tenor, grade & cut-off grade iii. Nugget Effect is bias/ blessing in sampling, analyze iv. Grab vs Bulk sampling, analyse the accuracy in terms of accuracy v. Differentiate between Alternate & Fractional shoveling 	2*5=10	CO3		
Q 8	A copper vein of uniform thickness found at a depth of 100 mtrs. Vein width at the top is 60 mtrs. Ass ay values are 15 & 9 respectively. Calculate the average assay of the deposit	10	CO3		

	formation of		minerals of C kide and sulph		ith suitable s als.	ketch, illı	istrate the		
	OR							10	CO3
	List down the mandatory factors to be considered while selecting the mining method with due justification.								
		<u> </u>			TION-C M=40 Marks)	-		1
Q 10	Given area	of entire pi	t=3600sq. mtr	` -			ılar shape		
	& is of equal area. Density of Iron: 1.28t/m³, Density of Mn: 1.12t/m³.								
	Calculate the average grade of the area.								
	Fe (height of pit-4mtrs, 1.4% Fe) Fe (height of pit-3.4mtrs, 1.2% Fe)						20	CO4	
	Mn (height of pit-3.4mtrs, 2.7% Fe Mn (height of				ght of pit-4mt	of pit-4mtrs, 3.2% Fe)			
Q 11	Elaborate the Reserve classification based upon Indian standard. Using the same, classify the following deposit							20	CO4
	The information is adequate to take investment decision. The left out 1/4 th area had recently subjected to initial exploration but has potential. OR There is a Pb deposit, which evaluated based upon 7 boreholes. Find out the average grade of the deposit. The details are as follows								
	There is a I					oles. Find	out the		
	There is a I	Sample	eposit. The de Thickness	tails are as	Tonnage	oles. Find	out the		
	There is a I	Sample location	eposit. The de Thickness (mtrs)	Area (ft2)	Tonnage Factor	grade	out the		
	There is a I	Sample location B-1	Thickness (mtrs)	Area (ft2) 5320	Tonnage Factor	grade	out the		
	There is a I	Sample location B-1 B-2	Thickness (mtrs) 150 135	Area (ft2) 5320 5300	Tonnage Factor 10 10	grade 1.21 0.97	out the		
	There is a I	Sample location B-1 B-2 B-3	Thickness (mtrs) 150 135 ?	Area (ft2) 5320 5300 4400	Tonnage Factor 10 10 10	grade 1.21 0.97 ?	out the		
	There is a I	Sample location B-1 B-2 B-3 B-4	Thickness (mtrs) 150 135 ? 175	Area (ft2) 5320 5300 4400 5520	Tonnage Factor 10 10 10 10	grade 1.21 0.97 ? 0.75	out the		
	There is a I	Sample location B-1 B-2 B-3 B-4 B-5	Thickness (mtrs) 150 135 ? 175 155	Area (ft2) 5320 5300 4400 5520 6800	Tonnage Factor 10 10 10 10 10	grade 1.21 0.97 ? 0.75 0.82	out the		
	There is a I	Sample location B-1 B-2 B-3 B-4 B-5 B-6	Thickness (mtrs) 150 135 ? 175 155 180	Area (ft2) 5320 5300 4400 5520 6800 4960	Tonnage Factor 10 10 10 10 10 10 10 10 10 1	grade 1.21 0.97 ? 0.75 0.82 0.66	out the		
	There is a F average gra	Sample location B-1 B-2 B-3 B-4 B-5 B-6 B-7	Thickness (mtrs) 150 135 ? 175 155 180 ?	Area (ft2) 5320 5300 4400 5520 6800 4960 4520	Tonnage Factor 10 10 10 10 10 10 10 10 10 1	grade 1.21 0.97 ? 0.75 0.82 0.66 ?			
	There is a F average gra	Sample location B-1 B-2 B-3 B-4 B-5 B-6 B-7 depth up to	Thickness (mtrs) 150 135 ? 175 155 180 ? which, deposi	Area (ft2) 5320 5300 4400 5520 6800 4960 4520	Tonnage Factor 10 10 10 10 10 10 10 10 10 1	grade 1.21 0.97 ? 0.75 0.82 0.66 ?			

0.4, 0.9, 1.2, 1, 1.7 &1.1 of Pb.

For Bore hole 3, the information is as follows-

Thickness	Grade
0-50	0.3
50-100	0.7
100-150	0.5
150-180	1
180-250	0.7
250-300	0.8

Cut-off grade is 0.7% of Pb