Name

Enrolment No:

Course: CHEM7026P (End Semester Examination May 2022)
Programme: M.Sc Chemistry Semester: II

Course Name: Organic reagents and spectroscopic analysis of Organic compounds

Time: 03 hrs. Max. Marks:100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1) Write your enrolment number on the top left of the question paper
- 2) Do not write anything on the question paper except your enrolment number

3)	Attempt all part of a question at one place only Internal choice is given for question number 9 and 11 only		
	Section - A (Attempt all FIVE Questions)		
1.	Find the structure of the organic compound whose mass spectrum shows m/e values as 114, 85, 72, 57, 41 and 29.	[4]	CO2
2.	Explain the product with a suitable mechanism:		
	H_3CO $TI(NO_3)_3$ $HNO_3.H_2O$	[4]	CO1
3.	Explain the fragmentation of methyl butanoate, toulene and para methyl phenol.	[4]	CO2
4.	Predict the product with mechanism:		
	H ₃ C CH ₃ SeO ₂	[4]	CO1
5.	How will you differentiate between the two isomeric alcohols, 2-pentanol and 3-methyl-2-butanol on the basis of their CMR spectra?	[4]	CO2
	SECTION - B (Question No. 6, 7 and 8 are Compulsory); attempt any one from 9A & 9B	I	
6.	Write the product with proper explanation:	[5+5]	CO1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

	CH ₃ CH ₃ SoC		
	SeO ₂		
	(ii) H ₃ C OAc		
7.			
/.	(i) How can the number and position of CMR signals help in the identification of four isomeric alcohol ($C_4H_{10}O$)?		
		[4+6]	CO2
	(ii) Discuss the factors which influence the IR frequency.		
8.	Complete the following reaction with suitable mechanism:		
	$\begin{array}{c} H_2C \\ \hline \\ H_3C \\ \hline \\ CH_2 \\ \end{array} \begin{array}{c} Li \ , NH_3(I), Et_2O \\ \hline \\ NH_4CI \\ \end{array} \begin{array}{c} ? \\ \hline \\ \end{array}$		
		[5+5]	CO1
	(ii) CH ₃ (ii) AgOAc/I ₂ (iii) H ₂ O		
9.A	(i). A compound with molecular formula $C_{12}H_{14}O_4$ gives the following signals in the NMR spectrum:		
	i) Unsymmetrical multiplet = $\delta 7.4$ (7.1 squares)		
	ii) quartet = $\delta 4.4$ (7.2 squares)		
	iii) Triplet = $\delta 1.5$ (10.8 squares)		
	Deduce the structure.		
	Deduce the structure.		CO2
	(ii). Give possible product in the following reactions and suggest the reasoning for the formation of the product:	[6+4]	CO3 CO1
	$\frac{\text{TI}(\text{NO}_3)_3}{\text{CH}_3\text{OH}}$		
9B	(i). A compound with molecular formula C ₅ H ₈ O ₃ gave the following spectral information:	[6+4]	CO3 CO1

(i) UV: 283 nm E _{max} 22	
(ii) IR: 3000-2500, 1715, 1342 cm ⁻¹	
(iii) NMR: δ2.12, singlet (3H), δ2.60, triplet(2H), δ2,25, triplet (2H) and δ11.1, singlet (1H)	

(ii), Give possible product in the following reactions and suggest the reasoning for the formation of the product.

$$\begin{array}{c} \text{CH}_3 \\ \\ \text{CH}_2 \\ \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CN} \\ \\ \text{DIBAL-H} \\ \\ \text{Hexane}, \quad -70 \end{array} ?$$

Find the structural formula of the compound.

SECTION - C (Question No. 10 is Compulsory; Attempt anyone from question numbers 11A & 11B)

10.	(i) A compound with the molecular formula C ₈ H ₈ O ₂ shows in its IR spectrum bands at 3200	[8+4	CO3
	and 1700 cm ⁻¹ . The PNMR spectrum shows a peak at δ10.9 as a 1 H singlet. The other two	+8]	CO ₂
	peaks being at δ 7.2 singlet (5H) and δ (2H). Its CNMR has four peaks in the region δ 130		CO1
	while one at high field δ 41.1 and at low field δ 178.3 to this position. Suggest a structure to		
	the compound.		
	(ii) Calculate the approximate ratio of peak at m/z value 190, 192, 194 and 196 of 1-bromo,2,3- dichloro propane in mass spectrometer.		
	(iii) Write the product with explanation :		

	H-BH2 A (1) CO, 4,0 Tocker (3) VOM VOM VOM VOM VOM VOM VOM VO		
11A.	(i) A compound ($C_9H_{10}O_2$), shows a molecular ion at m/z =150 and a base peak at m/z = 135. Its infrared spectrum shows a strong band at 1680 cm-1. Its PNMR spectrum shows signals in three distinct regions at δ 2.3 (3H, singlet); δ 3.6 (3H, singlet) and δ 6.4-7.5 (4H, a pair of doublets J = 8 Hz). Assign a structure.	[10+1 0]	CO3 CO1
	(ii) What is Tl(NO ₃) ₃ ? Give its application in organic chemistry.		
	OR		
11B.	(i) Write notes on i) Nuclear overhauser effect ii) Proton exchange reactions. (ii) What is SeO ₂ ? Give its four application in organic chemistry.	[10+1 0]	CO3 CO1