Name
Enrolment No:

Course: CHEM7026P
(End Semester Examination May 2022)
Semester: II
Programme: M.Sc Chemistry

Course Name: Organic reagents and spectroscopic analysis of Organic compounds

Time: 03 hrs.
Max. Marks:100
Instructions: Read all the below mentioned instructions carefully and follow them strictly:

1) Write your enrolment number on the top left of the question paper
2) Do not write anything on the question paper except your enrolment number
3) Attempt all part of a question at one place only
4) Internal choice is given for question number 9 and 11 only

Section - A (Attempt all FIVE Questions)

1.	Find the structure of the organic compound whose mass spectrum shows m/e values as 114, 85, $72,57,41$ and 29.	$[4]$	CO2
2.	Explain the product with a suitable mechanism:	[4]	CO1
3.	Explain the fragmentation of methyl butanoate, toulene and para methyl phenol.	$[4]$	$\mathbf{C O 2}$
4.	Predict the product with mechanism:	CO1	
5.	How will you differentiate between the two isomeric alcohols, 2-pentanol and 3-methyl-2-butanol on the basis of their CMR spectra?	$[4]$	$\mathbf{C O 2}$

SECTION - B

(Question No. 6, 7 and 8 are Compulsory); attempt any one from 9A \& 9B
6. Write the product with proper explanation:

	(ii)		
7.	(i) How can the number and position of CMR signals help in the identification of four isomeric alcohol $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$? (ii) Discuss the factors which influence the IR frequency.	[4+6]	CO 2
8.	Complete the following reaction with suitable mechanism: .(i) . (i) (ii) (ii) $\mathrm{H}_{2} \mathrm{O}$	[5+5]	CO1
9.A	(i). A compound with molecular formula $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ gives the following signals in the NMR spectrum: i) Unsymmetrical multiplet $=\delta 7.4$ (7.1 squares) ii) quartet $=\delta 4.4$ (7.2 squares) iii) Triplet $=\delta 1.5$ (10.8 squares) Deduce the structure. (ii). Give possible product in the following reactions and suggest the reasoning for the formation of the product:	[6+4]	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$
9B	(i). A compound with molecular formula $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}$ gave the following spectral information:	[6+4]	$\begin{aligned} & \hline \text { CO3 } \\ & \text { CO1 } \end{aligned}$

	(i) UV: $283 \mathrm{~nm} \mathcal{E}_{\max } 22$ (ii) IR: 3000-2500, 1715, $1342 \mathrm{~cm}^{-1}$ (iii) NMR: $\delta 2.12$, singlet $(3 \mathrm{H}), \delta 2.60$, triplet $(2 \mathrm{H}), \delta 2,25$, triplet $(2 \mathrm{H})$ and $\delta 11.1$, singlet $(1 \mathrm{H})$ Find the structural formula of the compound. (ii), Give possible product in the following reactions and suggest the reasoning for the formation of the product.		
	SECTION - C 		
10.	(i) A compound with the molecular formula $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$ shows in its IR spectrum bands at 3200 and $1700 \mathrm{~cm}^{-1}$. The PNMR spectrum shows a peak at $\delta 10.9$ as a 1 H singlet. The other two peaks being at $\delta 7.2$ singlet $(5 \mathrm{H})$ and $\delta(2 \mathrm{H})$. Its CNMR has four peaks in the region $\delta 130$ while one at high field $\delta 41.1$ and at low field $\delta 178.3$ to this position. Suggest a structure to the compound. (ii) Calculate the approximate ratio of peak at m / z value $190,192,194$ and 196 of 1-bromo,2,3- dichloro propane in mass spectrometer. (iii) Write the product with explanation :	$\begin{gathered} {[8+4} \\ +8] \end{gathered}$	$\begin{aligned} & \mathrm{CO} 3 \\ & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$

11A.	(i) A compound $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}\right)$, shows a molecular ion at $\mathrm{m} / \mathrm{z}=150$ and a base peak at $\mathrm{m} / \mathrm{z}=$ 135. Its infrared spectrum shows a strong band at $1680 \mathrm{~cm}-1$. Its PNMR spectrum shows signals in three distinct regions at $\delta 2.3(3 \mathrm{H}$, singlet); $\delta 3.6(3 \mathrm{H}$, singlet) and $\delta 6.4-7.5(4 \mathrm{H}$, a pair of doublets $J=8 \mathrm{~Hz}$). Assign a structure. (ii) What is $\mathrm{Tl}\left(\mathrm{NO}_{3}\right)_{3}$? Give its application in organic chemistry. OR	$\begin{gathered} {[10+1} \\ 0] \end{gathered}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$
11B.	(i) Write notes on i) Nuclear overhauser effect ii) Proton exchange reactions. (ii) What is SeO_{2} ? Give its four application in organic chemistry.	$\begin{gathered} {[10+1} \\ 0] \end{gathered}$	$\begin{aligned} & \hline \mathrm{CO3} \\ & \mathrm{CO} \end{aligned}$

