Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: Process Modelling and Simulation Program: M. Tech Chemical Engineering

Course Code: CHPD7009

Semester : II Time

: 03 hrs.

Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO				
Q 1	State the importance of assumptions in model development.	04 CO1					
Q 2	Discuss the sequential modular approach of process simulation 04						
Q 3	Explain about the mathematical consistency of a process model. 04						
Q 4	Distinguish between steady state model and dynamic model.	04	CO2				
Q 5	Discuss about distributed parameter system.	04	CO2				
SECTION B							

(4Qx10M= 40 Marks)							
Q 6	Regress the data given in Table 1 to the form $y = a(1 + x^2)^n$ using the method of least squares. Table 1: Data on x and y $x = 0.0 = 0.5 = 1.0 = 1.5 = 2.0 = 2.5 = 3.0 = 3.5 = 4.0$	10	CO2				
	y 1.00 0.89 0.71 0.55 0.44 0.37 0.31 0.27 0.24						
Q 7	Develop the mass balance equations for a double effect evaporator system.	10	CO3				
Q 8	Discuss about the formulation of Kb method used to compute new temperature profile in multicomponent distillation column.						
	<u>OR</u>	10	CO4				
	Write down a set of model equations for multicomponent distillation column with multiple stages.						
Q 9	State the application of orthogonal collocation method in chemical engineering system.	10	CO5				

SECTION-C (2Qx20M=40 Marks)

Q 10	Develop a two dimensi reactor with suitable clearly.						
	Consider a special (dia W/mK , $\rho = 8000~kg/r$) the ball is 300 K. It is immersed in transfer coefficient, h at there is no radial temponumerical technique to equation for predicting it was immersed in the temperature-decrease at	20	CO4				
Q 11	Apply the central difference find out T(1,1), T(2,1) a $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$						
			100°C				
	75°C	78.59 63.21	76.06 56.11	69.71 52.34	50°C	20	CO5
		(1, 1)	(2, 1)	(3, 1)			
			0°C				
		Fig. 1 A	heate	ed plate			