| Name: <br> Enrolment No: |
| :--- | :--- | :--- | :--- | :--- |
| Course: Chemistry I |
| Program: B. Tech. AE, APE-Up, EE, ECE, RSEE |
| Course Code: CHEM 1011 |
| Instructions: |
| 1. |
| All questions are compulsory. |
| 2. |
| Write all parts of a question at one place. |


|  | Explain each with suitable examples. |  |  |
| :---: | :---: | :---: | :---: |
| Q 7 | (i) In a polymer sample, $20 \%$ of the molecules have a molecular mass 20000; 40 \% have 30000 and the rest have 40000 . Calculate PDI. <br> (ii) X-rays of wavelength 36 nm is diffracted at an angle of $40^{\circ}$. Calculate the inter-planar spacing assuming third order diffraction. | 5 5 | CO5 |
| Q 8 | For thermal decomposition of $\mathrm{N}_{2} \mathrm{O}$, the proposed mechanism is: <br> Derive the rate law in terms of $\mathrm{N}_{2} \mathrm{O}$. | 10 | CO 2 |
| Q 9 | A sample of water contains following impurities: $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}=73$ $\mathrm{mg} / \mathrm{lt}, \mathrm{CaCl}_{2}=222 \mathrm{mg} / \mathrm{lt}, \mathrm{MgSO}_{4}=120 \mathrm{mg} / \mathrm{lt}, \mathrm{CaSO}_{4}=164 \mathrm{mg} / \mathrm{lt}$. Calculate the quantity of lime ( $74 \%$ pure) and soda ( $90 \%$ pure) needed for softening 5000 litre of water. <br> OR <br> With the help of suitable diagram and reactions, discuss zeolite process used for the softening of hard water. List out its advantages and disadvantages. | 10 | CO 3 |
| SECTION-C (2Qx20M=40 Marks) |  |  |  |
| Q 10 | (i) The standard reduction potential of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Ag}^{+} / \mathrm{Ag}$ electrodes are +0.337 V and +0.799 V respectively. Construct a galvanic cell using these electrodes so that its $\mathrm{E}^{\circ}$ cell is positive. For what $\left[\mathrm{Ag}^{+}\right]$will the EMF of cell be zero if $\left[\mathrm{Cu}^{2+}\right]$ is 0.01 M . <br> OR <br> a. For Barium hydroxide, calculate $\wedge_{0}$ (molar conductivity) at $25^{0} \mathrm{C}$ from the following. $\wedge_{0} \mathrm{NaOH}=248.61 \mathrm{Sm}^{2} \mathrm{~mol}^{-1} ; \wedge_{0} \mathrm{NaCl}$ $=126.45 \mathrm{Sm}^{2} \mathrm{~mol}^{-1} ; \wedge_{0} \mathrm{BaCl}_{2}=279.96 \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$ <br> b. Differentiate between specific conductance and molar | 10 | CO4 |



