Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Mathematics II
Program: B.Tech. (Non-CIT)
Course Code: MATH 1027
Semester: II
Time: 03 hrs.
Max. Marks: 100

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (Each carrying 10 marks) and attempt all questions from Section C (each carrying 20 marks). Question 8 and 11 have internal choice.

SECTION A

S. No.		Marks	CO	
Q 1	If $x^h y^k$ is an integrating factor of the non-exact differential equation $(2x^2y^2 + y)dx - (x^3y - 3x)dy = 0,$ then find h and k .	4	CO1	
Q 2	Find the solution of the differential equation $2x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 6y = 0 \ (x > 0).$	4	CO1	
Q 3	Determine for what value(s) of integer n the function $u(x,y) = x^n - y^n$ is harmonic?	4	CO2	
Q 4	Identify the type of singularity of the function $f(z) = e^{1/z}$ at $z = 0$.	4	CO3	
Q 5	Classify the partial differential equation $x^2u_{tt} - u_{xx} + u = 0$.	4	CO4	
SECTION B				
Q 6	Find the general solution of the differential equation $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 7^x - \log_e 3.$	10	CO1	
Q 7	Using Cauchy's integral formula, evaluate $\int_C \frac{\sin^6 z}{\left(z - \frac{\pi}{6}\right)^3} dz$, where C is the circle $ z = 1$.	10	CO2	
Q 8	Apply Residue theorem to evaluate the integral $\int_C \frac{e^z - 1}{z(z-1)(z-i)^2} dz$ where C is the circle $ z = 2$. OR Find Taylor's and Laurent's series expansion of the function $f(z) = \frac{1}{(z+1)(z+2)^2}$	10	CO3	

in the regions (i) |z - 1| < 2 (ii) |z - 1| > 3.

Q 9	Form a partial differential equation by eliminating the arbitrary constants a, b, c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.	10	CO4		
SECTION-C (2Qx20M=40 Marks)					
Q 10	 (i) Evaluate the real definite integral ∫_{-∞}[∞] x² / (1+x²)(4+x²) dx using contour integration. (ii) Find the bilinear transformation which maps the points z = 0, -i, -1 into the points w = i, 1, 0. 	10+10	CO3		
	 (i) Solve the partial differential equation (D² - 2DD' + D'²)z = sin(2x + 3y), where D ≡ ∂/∂x and D' ≡ ∂/∂y. (ii) If a string of length l is initially at rest in equilibrium position and each of its points is given the velocity (∂/∂t)_{t=0} = b sin³ (πx/l), find the displacement y(x, t). 				
Q 11	OR	10+10	CO4		
	(i) Solve the first order partial differential equation $xy^2p + y^3q = (zxy^2 - 4x^3),$ by using Lagrange's method.				
	(ii) Use the method of separation of variables to solve the equation $4\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 3u,$ given that $u = 3e^{-x} - e^{-5x}$ when $t = 0$.				