Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

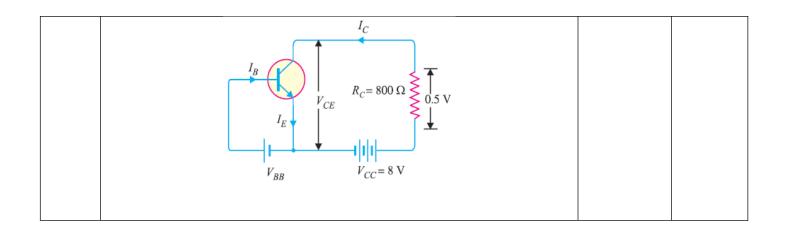
**End Semester Examination, May 2022** 

Course: Basic Electrical and Electronics Engineering

Semester: II

Program: B. Tech. (ADE, AM & NT, APE(Gas), CE, Civil, FSE, ME, Mechatronics) Time: 03 hrs.

Course Code: ECEG 1004


Max. Marks: 100

## **Instructions:**

## SECTION A (5Qx4M=20Marks)

| S. No. |                                                                                                                                                                                                                                                              | Marks | CO  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q 1    | Determine the current I in the circuit shown in Fig. Assume the diodes to be of silicon and forward resistance of diodes to be zero. $ \begin{array}{c} D_1 \\ E_1 = 24 \text{ V} \end{array} $ $ \begin{array}{c} E_2 = 4 \text{ V} \\ \hline \end{array} $ | 4     | CO1 |
| Q2     | Explain the significance of Superposition Theorem for circuit analysis.                                                                                                                                                                                      | 4     | CO2 |
| Q 3    | For an inductive circuit draw the effective impedance and draw the phasor diagram for the same.                                                                                                                                                              | 4     | CO3 |
| Q4     | Explain the working principle of DC Generator.                                                                                                                                                                                                               | 4     | CO1 |
| Q 5    | Why NAND gate is considered as a universal gate? Explain with the help of an example.                                                                                                                                                                        | 4     | CO4 |
|        | SECTION B                                                                                                                                                                                                                                                    |       |     |
|        | (4Qx10M= 40 Marks)                                                                                                                                                                                                                                           |       |     |
| Q 6    | Write short note on the following (i) advantage of transistors (ii) Operating point (iii) D.C. load line (iv) Current gain                                                                                                                                   | 10    | CO4 |
| Q7     | Explain the electromechanical energy conversion (EMEC) principle.  Analyze the operation of DC motor, constructional details of all the main parts.                                                                                                          | 10    | CO1 |
| Q 8    | Find the current through 100 ohm resistor using Mesh/Nodal analysis.                                                                                                                                                                                         | 10    | CO3 |

|            | 20Ω 30Ω                                                                                                                                                                                                                                |       |     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
|            | 50V — 100Ω\$ 120Ω\$ — 20V                                                                                                                                                                                                              |       |     |
| Q 9        | A 4– pole DC Shunt Generator running at 1500 rpm has an armature with 90 slots having 6 conductors per slot. The flux per pole is 6x10 <sup>-2</sup> Wb. Determine the induced EMF of the DC Generator if the coils are lap connected. | 10    | CO2 |
|            | OR                                                                                                                                                                                                                                     | 10    |     |
|            | Explain working of CB-Configuration Transistor (NPN), draw the input and output characteristics.                                                                                                                                       |       |     |
|            | SECTION-C<br>(2Qx20M=40 Marks)                                                                                                                                                                                                         |       |     |
| Q10        | Minimize the SOP expression using K-map.                                                                                                                                                                                               | 10    |     |
| (A)        | $Y = \sum m(1,25,7,9,12,14,15)$                                                                                                                                                                                                        |       | CO4 |
| (B)        | Obtain the expression for Full adder using truth table.                                                                                                                                                                                | 10    |     |
| Q11<br>(A) | A transformer is rated at 100 kVA. At full load its copper loss is 1200 W and iron losses are 850W. Calculate:                                                                                                                         | 10+10 | CO3 |
|            | <ul><li>(i) The efficiency at full load, unity power factor.</li><li>(ii) The efficiency at half load, 0.7 power factor lagging.</li></ul>                                                                                             |       |     |
| (B)        | The armature of 4 pole 230 V wave wound generator has conductors and runs at 400 rpm. Calculate the useful flux per pole.                                                                                                              |       |     |
|            | OR                                                                                                                                                                                                                                     |       |     |
|            | A transistor is connected in common emitter (CE) configuration in which collector supply is 8V and the voltage drop across the resistance                                                                                              | 20    |     |
|            | $^{R_{C}}$ connected in the collector circuit is 0.5V. The value of $^{R_{C}}$ = 800 ohm. If $^{\alpha}$ = 0.96, Determine (i) collector-emitter voltage (ii) base current.                                                            |       |     |

