Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: System Analysis and Process Optimization Program: M. Tech. Chemical Engineering Spl. PD Course Code: CHPD7027 Instructions: Attempt All questions

Semester: II Time: 03 hrs. Max. Marks: 100

	SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО			
Q1	Illustrate with the figure the 'Saddle point' in optimizing a function.	4	CO1			
Q2	Classify discrete and continuous variables.	4	CO1			
Q3	Explain the drawback of using the classical method for optimization.	4	CO3			
Q4	Discuss the difference between design, behavior, and side constraints.	4	CO3			
Q5	Recite the difference between deterministic and stochastic optimization techniques.	4	CO2			
	SECTION B	L L				
	(4Qx10M= 40 Marks)					
Q6	The Gulf South Pipeline company, while transporting natural gas utilizes a	10	CO3			
	certain part of the natural gas flowing in the pipeline as an energy source for					
	running the compressor. Researchers found that around 3-4% of the total gas					
	transported through the pipeline was consumed in turbine-run compressors.					
	This energy consumption was quite large as a huge amount of the gas is					
	being transported through pipelines. Researchers formulated the problem					
	and found that the fuel consumed in compressors is dependent on the inlet					
	and outlet pressure of the compressors and is obtained from the following					
	relation:					
	$m_f = P_1 - P_2 + 2P_1^2 + 2P_1P_2 + P_2^2$ Here: $m_f =$ Natural Gas consumed in the					
	compressor; P_1 = Pressure at the inlet of the compressor; P_2 = Pressure at					
	outlet of the compressor					
	Using Cauchy's Steepest Descent method and taking starting point as:					

	$X = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, calculate the optimum value of the pressures P ₁ and P ₂ at which the fuel consumed in the compressor gets minimized . Solve up to FOUR NUMBER of iterations .		
Q7	A research scholar working at "UNIVERSITY OF PETROLEUM AND ENERGY STUDIES" for a pipeline project wishes to minimize the cost of pipeline networks. On investigation, he found that there are two major components that contribute to the cost of pipeline networks. These are i . Investment Cost of pipeline Network (I) ii . Operating Cost of pipeline network (O). The researcher found that the total cost of pipeline networks is obtained from the following relation:		
	$TC = 6I^2 - I - 2O - 6IO + 2O^2$	10	CO3
	T.C. = Total Cost of Pipeline Networks; I = Investment Cost of Pipeline Networks; O = Operating cost of pipeline networks $X = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ probe length as } \theta = 0.01 \text{ , and using}$ the UNIVARIATE method, minimize the cost of the pipeline network. Solve up to TWO NUMBER OF ITERATIONS.		
Q8	A pipeline operator wishes to minimize the formation of gas hydrates in the pipeline. The operator found that the gas hydrates can be minimized by optimizing temperature and pressure in pipeline networks. Further, it was found that the gas hydrate formation was a correlated with temperature and pressure according to the following correlation: $f(P, T) = 6P^2 - 6PT + 2P^2 - P - 2T$	10	CO4
	Perform TWO ITERATIONS of the FLETCHER REEVES that help the pipeline operator to minimize the formation of gas hydrates.		

	$X = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$		
Q9	Use the Exterior penalty method to minimize the following function:		
	$\min f = 9x_1^2 + 4x_2^2 + 3x_1 + 3x_2$	10	CO4
	Subjected to:		
	$g(x_1) = 5 - 2x_1 \le 0$; $g(x_2) = 2x_2 - 3 \le 0$		
	SECTION C		
	(2Qx20M= 40 Marks)		
Q10	Use Pivoting method to solve the following set of equations:	20	CO2
	$2x_1 + 3x_2 - 2x_3 - 7x_4 = 1$; $x_1 + x_2 + x_3 + 3x_4 = 6$; $x_1 - x_2 + x_3 + 5x_4 = 4$		
Q11	A pipeline network problem involves minimizing the cost of laying the		
	pipeline by finding the optimum route of the pipeline. The cost of the		
	pipeline depends on four decision variables, R ₁ , R ₂ , R ₃ , and R ₄ , and is		
	obtained from the following co-relation		
	$C = R_1 + 2R_2 + 3R_3 + 4R_4 - 30$		
	The bounds on various decision variables are as follows:	20	CO5
	$1 < R_1 < 25$; $3 < R_2 < 30$; $4 < R_3 < 28$; $5 < R_4 < 30$		
	Using Genetic Algorithms, <i>minimize</i> the cost of the Gas Pipeline Network.		
	Show, manually the step wise procedure involved up-to one generation only.		
	Assume the number of chromosomes as six, crossover rate as 25% and		
	Mutation rate as 10%.		