

	atm pressure if it absorbs 100 J of heat during a reversible isothermal expansion. (Given: $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$; Hints: use Avogadro's law to determine initial volume of the ideal gas)		
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Derive the expression of entropy of mixing of two gases O_{2} and N_{2} assuming that both the gases behaves ideally.	10	CO2
Q 7	(i) Derive the expression of thermodynamic equation of state of $\left(\frac{\partial U}{\partial V}\right)_{T}$. (ii) Calculate $\left(\frac{\partial U}{\partial V}\right)_{T}$ for a real gas which follows equation of state (V- b) $(\mathrm{P}+\mathrm{a})=\mathrm{RT}$ Where "a" and "b" are constants.	$5+5$	CO2
Q 8	Using thermodynamic square write down all the criteria of spontaneity in terms of S, P, T, V, U, H, A and G.		CO2
Q 9	Show that the chemical potential of a pure substance in two phases in equilibrium are equal. OR Determine the feasibility of formation of ethanol by calculating the standard Gibbs free energy at $25^{\circ} \mathrm{C}$ as represented by the following equation $2 \mathrm{C}(\text { graphite })+3 \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) ; \Delta H^{0}=500 \frac{\mathrm{~J}}{\mathrm{~mol}}$ Given that: $S_{C_{2} \mathrm{H}_{5} \mathrm{OH}(l)}^{0}=160 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S_{C(\text { graphite })}^{0}=5.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S_{\mathrm{H}_{2}(g)}^{0}=130$.	10	CO3
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	(a) Write the statement of Planck's third law of entropy. Show using a graphical diagram of entropy vs T , when a solid at zero kelvin is heated to gas at T kelvin. (b) Calculate the third law entropy of a substance in the gas phase at $277^{\circ} \mathrm{C}$. Given: (i) Heat capacity of substance in the solid phase follows a relation Cp (in Joule) $=0.1 \mathrm{~T}^{3}$ from zero kelvin to its melting point $7^{\circ} \mathrm{C}$ (ii) $\Delta \mathrm{H}_{\text {fus, }}=11.68 \mathrm{~kJ} / \mathrm{mole}$ at the melting point $7^{\circ} \mathrm{C}$ (iii) Heat capacity of substance in the liquid phase follows a relation Cp (in Joule) $=$ $25+0.05 \mathrm{~T}$ from $7^{\circ} \mathrm{C}$ to its boiling point $127^{\circ} \mathrm{C}$ (iv) $\Delta \mathrm{H}_{\text {vap,m }}=25.52$ $\mathrm{kJ} / \mathrm{mol}$ at the boiling point $127^{\circ} \mathrm{C}$. (v) Heat capacity of substance in the gas phase follows a relation Cp (in Joule) $=10+0.2 \mathrm{~T}$ from $127^{\circ} \mathrm{C}$ to $277^{\circ} \mathrm{C}$	10+10	CO3

Q 11	(a) Derive the thermodynamic expression of freezing point of a solution. OR Derive the thermodynamic expression of boiling point of a solution. (b) Show that the value of Helmholtz free energy at constant temperature and volume decreases for a spontaneous process. OR Calculate the enthalpy of reaction for $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ at 450 K using the following crude guesses for the heat capacities: $C_{P}\left(\mathrm{~N}_{2}\right)$ $=3.5 R, C_{P}(\mathrm{H} 2)=3.5 R, C_{P}(\mathrm{NH} 3)=4 R$. It is known that $\Delta H_{\mathrm{f}}^{0}\left(\mathrm{NH}_{3}(\mathrm{~g})\right.$, $298 \mathrm{~K})=-45.72 \mathrm{~kJ} / \mathrm{mol}$.	10+10	CO 3

