N	am	۰.	
Τ.4	am	•	

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Thermal Physics Semester: II

Program: B Sc (H) Physics Time : 03 hrs.
Course Code: PHYS 1029 Max. Marks: 100

Instructions:

All questions are compulsory (Q9 and Q11 have an internal choice)

Scientific calculators can be used for calculations.

SECTION A

(5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	List all the Maxwell relations	4	CO2
Q 2	Explain physically why there is a cooling in Adiabatic demagnetization.	4	CO3
Q 3	Calculate the depression in melting point of ice per atmosphere increase of pressure, if ratio of the densities of ice and water at 0°C is 10/11. (given latent heat of melting L=80 Cal/gm)		CO3
Q 4	A gas at 27°C is compressed suddenly to eight times its initial value. Calculate the rise in temperature. Take γ =1.5	4	CO1
Q 5	Define mean free path for a perfect gas.	4	CO1
SECTION B			1

(4Qx10M= 40 Marks): Q9 has an internal choice.

Q 6	State the principle of increase of entropy and apply it to show that the entropy of	10	COA
	Universe is always increasing.	10	CO2
Q 7	Describe Nernst Heat theorem. Show that the heat capacity vanishes at the absolute zero	10	CO1
Q 8	Given the molecular speed distribution equation-		
	$n(v)dv = 4\pi N \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 e^{-mv^2/2kT} dv$	10	CO4
	Derive the expression for v_{av} , v_{rms} and v_{mp}		
Q 9	Discuss any indirect method for the verification of Maxwell-Boltzmann		
	Distribution law.		
	Or Calculate the fraction of oxygen, molecules within 1% of the most probable velocity at N.T.P. What is the effect of changing (i) the gas to hydrogen (ii) the temperature to 500°C.	10	CO4

SECTI (2Ox20	ON-C M=40 Marks): <i>Q11 has an internal choice</i> .		
Q 10	Discuss Adiabatic Demagnetization. Give its experimental procedure, show theoretically that it produces cooling in paramagnetic substances.	20	CO3
Q 11	 (a) Describe Brownian movement. Give the Einstein's theory for the Brownian movement. (b) 14 grams of N₂ and 4 grams of He are mixed in a thermally insulated container. What will be the rms speeds of N₂ and He molecules after equilibrium is reached, if their rms speeds before mixing were respectively 500 ms⁻¹ and 1500 ms⁻¹? The molecular weights of nitrogen and helium are respectively 28 and 4. 	10+10	CO4
	Or		
	 (a) Discuss Joule-Thomson Effect; obtain the expression of Joule Thomson coefficient. Analyze its variation for real and perfect gases. (b) A monoatomic Vander Waal's gas is contained in a cylinder of molar volume 0.8 litre/mol at a pressure of 36 atm. If a = 4.05 lit² mol⁻², b = 0.037 lit/mol and R = 0.082 atm.lit K⁻¹mol⁻¹, calculate internal pressure and temperature of the gas. 	10+10	