Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, May 2022**

Course: Digital Image Processing Program: B.Tech. CS-GG **Course Code: CSEG 3001**

Semester: VI

: 03 hrs. Time Max. Marks: 100

Instructions: Answer Precisely.

SECTION A

	(5Qx	4M=20Marks)						
S. No.			Marks	CO				
Q 1	Define binary, grayscale and color ima	ges.	4	CO2				
Q 2	Discuss different distance measures be Calculate Euclidean distance between p	4	CO1					
Q 3	Why median filter is better than mear image?	4	CO3					
Q 4	Perform point operation over given ima I = 4	4	CO1					
Q 5	What are the purposes of defining color models? State some color models available.							
		ECTION B 0M= 40 Marks)						
Q 6	Explain key stages in digital image prod		10	CO1				

	OR Exp	lain	diff	ferei	nt co	omp	oner	nts of c	ligital in	nage pro	cessing	system	in		
Q 7	Binary dilation and erosion are two primitive operators, which may be used to define other morphological operations. (a) Explain how binary erosion is performed. (b) Explain how binary dilation is performed. (c) A={(0,1),(1,1),(2,1),(2,2),(3,0)} B={(0,0),(0,1)} Perform binary erosion of A by B									10	CO4				
Q 8	Define image segmentation. Differentiate gradient and Gaussian edge detection operators with example.									10	CO2				
Q 9	Gen data effic Sy	Generate the Shannon fano code for all the letters/numbers for given data. Calculate number of compressed bits, entropy, average length and efficiency of code words. Symbol (x) A1 A2 A3 A4 A5 A6 Probability of occurrence 0.15 0.25 0.30 0.12 0.10 0.08						10	CO3						
	of	x in	mes	ssag	e P	(\mathbf{x}_i)			SEC	CTION-	$\overline{\mathbf{C}}$				
										/110N- M=40 M					
Q 10	i. What are the different types of redundancy that may occur in a digital image? Categorize image compression techniques based on different types of redundancy. ii. Explain JPEG image compression technique with all its components.									20	CO3				
Q 11	Apply histogram equalization on the input image of 8_8 below. Let the input and output gray levels be in the range of [0, 7].												20	CO2	
	1	1	5	5	0	0	1	0							
	1	1	2	2	0	1	0	1							
	1	7	6	6	5	5	0	0							
	0	7	6	7	5	5	5	5							
	4	7	6	7	3	5	7	0							
	1	1	4	1	6	5	6	1							
	2	2	4	1	1	5	1	1							
	1	2	2	0	0	0	0	5							
		'hat	is th	ne us	se o	f sn	nooth				eprocess plain any				

with kernel.	
iii. What are the types of blur usually occurred in image processing?	
Explain different image quality measures (IQMs) proposed to evaluate	
imaging systems and image coding/processing techniques.	