NI	٠.		_	_
170	•	m	Δ	•
⊥ 1	а	ш	·	•

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: B. Tech CSE+AI/ML **Semester:** IV**Program: Machine Learning** Time : 03 hrs. Course Code: CSAI 2001 Max. Marks: 100

Instructions:

SECTION A
(5Qx4M=20Marks)

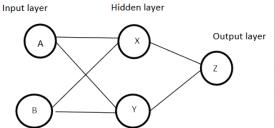
S. No.				Marks	CO
Q 1	Define Machine Lear	rning. Write down five applicat	ion of it.	4	CO2
Q 2 List down four application of Linear Regression Model with their dependent and independent variable.			4	CO3	
Q 3	Define mean, mediar	n, mode and standard deviation	with formula.	4	CO1
Q 4	Time Point	Infosys	TCS		
	Jan 2019	6	20		
	Feb 2019	5	10		
	March 2019	4	14	_	CO1
	April 2019	3	5	4	CO1
	May 2019	2	5		
	Find it either the stoc	ek price are independent to each	other or not.		
Q 5	5 Differentiate between Similarity Metrics and Term Weighting.				CO5
	1	SECTION	В	1	

(4Qx10M = 40 Marks)

Q 6	Explain and discuss the architecture of information retrieval system of Google Search Engine.			CO5
Q 7	Discuss and derive the mathematical proof of linear regression model.			CO3
Q 8	Transactional data	a of AllElectronics	10	CO2
	TID	List of item_IDs		
	T100	I1, I2, I5		
	T200	12, 14		
	T300	12, 13		
	T400	I1, I2, I4		
	T500	I1, I3		
	T600	I2, I3		
	T700	I1, I3		
	T800	I1, I2, I3, I5		
	T900	I1, I2, I3		

	Evaluate the mo			set of 3 i	tems us	sing FP-Gro	wth algorithm for		
Q 9	Discuss Support is different from Explain KNN al	Vector Machine other tuples? For gorithm. Why it en choosing the sing KNN and a	e mod ormul is als value	ocalled of k? For the val	Lazy Lor the bue of k	earner? Whelow proble=3.	in SVM and how it of the SVM model. nat are the points to em predict for the		
		John	Age 35	Income (K) 35	No. of cards	Response Yes			CO4
		Rachel	22	50	2	No		10	
		Ruth	63	200	1	No			
		Tom	59 25	170 40	1	No Yes			
		David	37	50	2	?			
0.10		1		Qx20N		arks)			
Q 10	representing local A1(2, 10)	ation into three of A2(2, 5), A3(8) action is Euclide of each cluster, a-means algorithm for	cluster 3, 4), I an dis respe- m	rs: B1(5, 8) stance. S ctively.	, B2(7, uppose	5), B3(6, 4) initially we	t points with (x, y) , C1(1, 2), C2(4, 9): e assign A1, B1, and e first round	8+6+6 =20	CO4
Q 11	a) Write down Bayes' Theorem. Implement Bayesian Classification model on below dataset and try to predict for the given instance: (2+10+3=15 Marks)								
	Outlook	Temp	Hu	midity	V	Vindy	Play Golf		
	Rainy	Cool	Hig	gh	T	rue	?		

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No


20

CO4

Discuss how to handle the continuous dataset in Bayesian Classification model.

b) Discuss gini index in CART with the formula. How it helped to solve the problem of C4.5? (5 marks)

OR

Input	Output	
A	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

Learning rate=0.35

Biases are $\infty x = \infty y = \infty z = 0$. Neural Network of above diagram has two nodes (A,B) in the input layer, two nodes in the hidden layer (X,Y)and one node in the output layer (Z). The values given to weights are taken randomly and will be changed during back propagation iterations. Initial weights of the top input nodes taken at random are 0.4, 0.1. Weights of bottom input node are 0.8 and 0.6. Weights of top hidden node is 0.3 and that of bottom hidden node is 0.9. Assume the number of iterations are two.