Name:

Enrolment No:

Time: 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, May 2022**

Course: Operating Systems

Semester: II

Program: B.Tech(Hons) Computer Science and Engineering

Course Code: CSEG 1013 Max. Marks: 100

Instructions:

SECTION A (**5Qx4M=20Marks**)

S. No.		Marks	CO		
Q 1	How are multi computer systems different from multi processor systems?	4	CO1		
Q 2	Explain the process of context switching with necessary diagrams.	4	CO2		
Q 3	What are the necessary conditions for deadlock? Will there be a deadlock if any one of those conditions does not appear?				
Q 4	What is rollback? Explain why rollback process is necessary for deadlock recovery.	1+3	CO3		
Q 5	What is race condition? Explain with proper example.	1+3	CO2		
	SECTION B (4Qx10M= 40 Marks)				
6.	Differentiate between multi-programming, multiprocessing and multitasking systems.	10	CO1		
7.	Discuss the relative advantages and disadvantages of implementing Semaphores with integers and structures, with the help of pseudo code.	10	CO2		
8.	Find out if the following system is in deadlock for the given system snapshot. If not, then what is/are the possible safe sequence(s)? If it is in deadlock, then name the processes, which has, lead it to deadlock. Consider resource type A is having 10 instances, B is having 5 instances and C is having 7 instances. Allocation Request Available $ABC ABC ABC$ $P_0 0 1 0 0 0 0 0$ $P_1 2 0 0 2 0 2$ $P_2 3 0 3 0 0 0$	10	CO3		

2 1 1 1 0 0

		P_4	002 002			
			OR			
	Write down is algorithms in			and resource allocation		
9.	Perform Priority scheduling (a) preemptive and (b) non preemptive, on the given set of processes and find out the average turnaround and waiting times for both the cases.					
	Process	Priority	Burst Time	Arrival Time	10	CO2
	P1	1	20	5		
	P2	2	10	3		
	P3	3	15	0		
				SECTION-C 20M=40 Marks)		
10.	3, 4, 5. How	many pag	wing page refere	ence string -1, 2, 3, 4, 1, 2, 5, 1, occur for the cases (i) frame simplying FIFO page replacement	ze	CO4
				o internal fragmentation. Expla ement for multilevel page tables		
11.	should help	one to co	omprehend the	necessary diagram. The diagram concepts of tracks, sectors at time and rotational latency in the sectors are time and rotational latency in the sectors.	nd	CO5
			OR			
	1 ' '		•	ked and indexed file allocation of necessary disk and directon		
	(b) Consider	r the dis	k queue with	I/O requests on the following	ng	

cylinders in their arriving order: 98, 183, 37, 122, 14, 124, 65, 67. The disk head is assumed be at cylinder 53. The disk consists of total 200
cylinders. Show the disk head movement with diagram using FCFS,
SSTF, LOOK and C-SCAN scheduling algorithms. Calculate the total head movements. (10)
nead movements. (10)