UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: ML Program: Master of Technology (CSE) Course Code: CSA 7007P Semester: 2nd Time: 03 hrs. Max. Marks: 100

Instructions:

			TION A (=20Marks)		
S. No.		(0.2.2.1.1.2		Marks	CO
Q 1	Write all steps	of learning system in Machi	ne learning	4	C01
Q 2		ference between linear mode form non-linear model to	el and non-linear model? linear model? Justify your	4	CO1
Q 3	Define informa it is observed		ce is rolled several times and of getting 5 and chance of d. Find the entropy	4	CO3
Q 4	Let us conside the dataset. Dataset: $X = [2$	4	CO2		
Q 5	Distinguish bet	tween the supervised and un	n-supervised learning system. n in un-labelled data? Justify	4	CO3
			TION B = 40 Marks)		
Q 1	Develop a regree model. Year	ession model and calculate t			
		composition			
	2015 2016	5.5	70 65		
	2018	4.5	60		CO3
	2017	3.5	55		
	2018	3.0	50		
	2020	6.0	67		
	2021	6.5	62		
Q 2	Consider a clas	esification model $i \frac{e^y}{1+e^y}$ for	r the following dataset		CO3
	a) Find the	culate the performance of th e accuracy of the model if th red as 0.58, 0.65	e model.		

	c) What corr d) Find	at fraction of actual licted? at fraction of predict ectly predicted? I the F1- score	class is			
	Chemical composition		e(yes) or not	t Predicti	on of model	
	5.5	yes	(110)	0.55		
	5.0	no		0.60		
	4.5	no		0.65		
	3.5	yes		0.70		
	3.0	yes		0.85		
	6.0	no		0.75		
	6.5	no		0.70		
Q 3	recall, and l	below Confusion M F1-score	Pred		acy, precision,	
		Class	1	0		C03
	Actual	1	30	10		03
		0	20	30		
Q 4	Briefly exp approximat	CO2				
	<i>v</i> 1	plain the procedure approximated? If so	1	e-processing.	Can a known	CO2
			SECT	TION-C =40 Marks)	I	I
Q 1	Implement	gorithm of k-means k-means algorithm f t us consider the cer 2. Var1	clusters thro for the given	ough flow cha dataset for cr	reating two	CO3

	1		1.0		1.0		
	2		1.5		2.0		
	3		3.0		4.0		
	4		5.0		7.0		
	5		3.5		5.0		
	6		4.5		5.0		
	7		3.5		4.5		
Q 2	predict th		class for	some X	= [Ou	s classifier to tlook=Sunny, ?]	
	Instance number	Outlook	Temperat ure	Humidity	Windy	Play	
	1	Overcast	Mild	High	True	Yes	
	2	Overcast	Mild	Normal	True	Yes	
	3	Sunny	Mild	Normal	False	Yes	
	4	Rainy	Mild	High	True	Yes	
	5	Rainy	Hot	Normal	False	No	CO3
	6	Overcast	Cool	High	True	Yes	
	7	Overcast	Cool	Normal	True	Yes	
	8	Rainy	Mild	High	False	No	
	9	Sunny	Cool	Normal	False	Yes	
	10	Rainy	Hot	High	False	No	
	11	Sunny	Hot	High	False	Yes	
	12	Sunny	Hot	High	True	Yes	
	13	Overcast	Hot	Normal	False	No	
	14	Sunny	Cool	Normal	False	No	
Q 3	Suppose you developed a Logistic regression model, which is defined as $z = \frac{e^y}{1+e^y}$ for the following training data set, where y is the linear regression model. First develop the regression model X (Independent variable) Y (Dependent variable) 2 yes 2.5 yes 1.5 no 0.5 no				CO3		
	3.5			no yes			

5	yes	
5.5	yes	
Find the model's	prediction? Justify your answe	e you confident