Name:

Enrolment No:

UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN

End-Semester Examination 2022

Program/course	: MA Economics	Semester IV
Subject	: Financial Econometrics	Max. Marks 100
Code	: FINC 8009P	Duration : 3 Hrs
No. of page/s	5	

	SECTION A		
Q1	Answer all the questions. Each Question will carry 2 Marks	10Qx2 M=20 Marks	СО
i.	Consider the model $Q^{d} \stackrel{*}{\underset{\sim}{\sim}} f P, P^{s}, P^{c}, INC$ where Q^{d} is quantity demanded of a particular product per month, P is the price of the product, P^{s} is the price of substitutes, P^{c} is the price of complements, and INC is monthly income. This equation represents	[2]	CO1
ii.	 a. a non-linear model b. an economic model c. an econometric model d. an interval forecast Why is a random error term included in an econometric model? 	[2]	CO1
11.	 a. Because many economic models have not been well developed yet and need to allow for inaccuracies. b. Because some people are irrational. c. Because there is intrinsic uncertainty in any economic activity due to individual decision making. d. Because most estimating techniques are not well suited to work with a deterministic model. 	[2]	
iii.	The parameters estimated using econometric methods are generally used foror a. testing hypotheses; predicting b. confirming; denying effects of policy c. validation; repudiation d. generating data; probability distributions	[2]	CO1

iv.	Which of the following sections usually comes first in a research report?	[2]	CO1
	a. State of problem.		
	b. Description of data.		
	c. Review of literature on the topic.		
	d. Economic model.	[2]	CO1
V.	How do you find the first difference in y_t ?	[2]	COI
	a. $\tilde{y_t} y_{\tilde{t}1}$		
	b. $\frac{dy}{dt}$		
	$c. \qquad \tilde{y_t} y^-$ $\delta. \qquad \tilde{y_t} y_{\tilde{t} _{1}} = 2$		
	$\delta. \qquad \tilde{y_t} y_{\tilde{t}1} \qquad 2$		
vi.	Which of the following is NOT a necessary condition for a variable to be stationary?		CO1
	a. <u>Eyt</u> *° M		
	β . var $yt \stackrel{*}{\longrightarrow} \bigoplus_{j=1}^{n}$		
	c. $\operatorname{cov} yt$, yts , $\overset{\circ}{\circ} \operatorname{cov} yt$, \tilde{yts} , $\overset{\circ}{\bullet} \clubsuit$		
	$\delta. \qquad \stackrel{F}{{\cdot}} y\tilde{t} \ \tilde{yt1} \ \overset{*}{\stackrel{*}{\cdot}} \ \overset{\tilde{w}}{\tilde{s}}$		
vii.	A stochastic process is best described as	[2]	CO1
	a. deterministic		
	b. theoretical		
	c. random		
	d. mean reverting		
viii.	Which non-stationary time series has a constant mean but non-constant variance?	[2]	CO1
	a. Random walk		
	b. AR(1) with linear trend		

	c.	Randon	n walk with drift					
	d.							
			Deterministic trend			[0]	001	
ix.	What is a	spurious regro	ession?				[2]	CO1
	a.		Statistically significant but meaningless results generated by regression analysis of non-stationary data					
	b.		The results generated by regression analysis of a station variable dependent on a non-stationary series					
	c. Regression analysis where endogenous and exogenous variables are reversed							
	d.	Regress	ion analysis that is	imp	ossible due to lac	k of identification		
X.	What is the	e null hypothe	esis of the Dickey-F	fulle	r Test for testing	with no constant and no trend?	[2]	CO1
	<i>a</i> .	$a. \qquad y_t \stackrel{s}{\sim} y_{\tilde{t}+} v_t$						
	<i>b</i> .	$y_t \stackrel{s}{\sim} lpha$						
	С.	$y_t \overset{\circ}{\longrightarrow}$	$y_t \stackrel{\star}{\sim} \rightarrow p y_{\tilde{t}1} v_t$					
	$d. \qquad y_t \stackrel{*}{\longrightarrow} py_{\bar{t}} \stackrel{*}{\Longrightarrow} t v_t$							
				Secti	on B		4Qx5	
	_	-	ons. Each question		-	.S.	M= 20 Marks	CO
Q2	Fill in the	blanks in th	e following ANO	VA	table:			
	It	ems	Sum of squares	df	Mean square			
		Regression	8552.73	1	?			CO2
		Residual	337.273	8	?		[5]	
		Total	8890	9	?			
		$R^2 = ?$			F(1, 8) = ?			

Q3	What do you mean by linear trend model? Interpret the results given below, which represents a linear trend model, where the dependent variable is expenditure on service sector for the period 2000-2017. The result from the regression follows.		CO2
		[5]	
	$ExServ_t \approx 15783.87.17633.76t$		
	$t \stackrel{*}{\sim} (0.91)$ (13.38) r ² =0.8996		
Q4	What is regression through origin? Do you think CAPM model has no intercept? Explain.	[5]	CO2
Q5	What are various models used for estimating volatilities in the financial return data.	[5]	CO2
	Section C	20.10	
	Attempt all the questions. Each question carries equal marks.	3Qx10 M=30 Marks	
Q7	What do you mean by ARIMA model. Write all the steps to forecast a financial time series data.	[10]	CO3
Q8.	Suppose you have two series that you have tested and have found them to be cointegrated. You are interested in explaining the dynamics of the relative short-run movements of the series. Which of the following estimation choices should you use? Explain the reason		
	a. An ARDL model in levels	[10]	CO3
	b. A simple regression model with least squares		
	c. An error-correction model		
	d. An ARDL model in first-differences		
Q9	Show how a standard AR(1) error model $yt \stackrel{*}{\sim} \rightarrow \oint_0 xt$ et ; $et \stackrel{*}{\sim} \checkmark \tilde{et}_1$ vt can be rewritten as an ARDL(1,1) model.	[10]	CO3
	Section D		
	Answer all questions. Each Question carries 15 Marks.	2Qx15 M= 30 Marks	CO
Q12	Augmented Dickey-Fuller test for l_FP testing down from 30 lags, criterion AIC sample size 3982 unit-root null hypothesis: a = 1		
	<pre>test with constant including 13 lags of (1-L)l_FP model: (1-L)y = b0 + (a-1)*y(-1) + + e estimated value of (a - 1): - 0.000558878 test statistic: tau_c(1) = -1.59761 asymptotic p-value 0.4838</pre>		

	<pre>1st-order autocorrelation coeff. for e: - 0.000 lagged differences: F(13, 3967) = 3.252 [0.0001]</pre>		
	with constant and trend including 13 lags of (1- L)l FP	[15]	CO4
	<pre>model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + + e estimated value of (a - 1): - 0.0015488</pre>		
	<pre>test statistic: tau_ct(1) = - 1.8604 asymptotic p-value 0.6749 1st-order autocorrelation coeff. for e: - 0.000 lagged differences: F(13, 3966) = 3.250 [0.0001]</pre>		
	Interpret the above results. Is there any difference between the two models?		
Q13.	If you have to model credit rating of a company, what are the variables you will include in your model? Explain in detail.	[15]	CO4