Enrolment No:

UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN

End-Semester Examination 2022

Program/course: MA EconomicsSemester: IVSubject: Financial EconometricsMax. Marks: 100Code: FINC 8009PDuration: 3 Hrs

No. of page/s : 5

SECTION A

Q1	Answer all the questions. Each Question will carry 2 Marks		10Qx2			
		M=20	CO			
			Marks			
i.	Consider the n	nodel $ extbf{\emph{Q}}^d = f\left(extbf{\emph{P}}, extbf{\emph{P}}^s, extbf{\emph{P}}^c, extbf{\emph{INC}} ight)$ where $ extbf{\emph{Q}}^d$ is quantity demanded of a particular	[2]	CO1		
	produ the pr					
	a.	a non-linear model				
	b.	an economic model				
	C.	an econometric model				
	d.	an interval forecast				
ii.	. Why is a random error term included in an econometric model?		[2]	CO1		
	a.	Because many economic models have not been well developed yet and need				
		to allow for inaccuracies.				
	b.	Because some people are irrational.				
	C.	Because there is intrinsic uncertainty in any economic activity due to individual				
		decision making.				
	d.	Because most estimating techniques are not well suited to work with a				
		deterministic model.				
iii.	The parameter	rs estimated using econometric methods are generally used for or	[2]	CO1		
	a.	testing hypotheses; predicting				
	b.	confirming; denying effects of policy				
	C.	validation; repudiation				
	d.	generating data; probability distributions				
	u.	generating data, probability distributions				

iv.	Which of the following sections usually comes first in a research report?	[2]	CO1
	a. State of problem.		
	b. Description of data.		
	c. Review of literature on the topic.		
	d. Economic model.		
V.	How do you find the first difference in y_t ?	[2]	CO1
	$a. y_t - y_{t-1}$		
	b. $\frac{dy}{dt}$		
	c. $y_t - \overline{y}$		
	$d. \qquad \left(y_t - y_{t-1}\right)^2$		
vi.	Which of the following is NOT a necessary condition for a variable to be stationary?		CO1
	a. $E(y_t) = \mu$		
	a. $E(y_t) = \mu$ b. $var(y_t) = \sigma^2$		
	c. $\operatorname{cov}(y_t, y_{t+s}) = \operatorname{cov}(y_t, y_{t-s}) = \gamma_s$		
	$d. E(y_t - y_{t-1}) = \pi$		
vii.	A stochastic process is best described as	[2]	CO1
VII.		[2]	201
	a. deterministic		
	b. theoretical		
	c. random		
	d. mean reverting		
viii.	Which non-stationary time series has a constant mean but non-constant variance?	[2]	CO1
	a. Random walk	r - 1	- 3 -
	b. AR(1) with linear trend		

		c. Randon	n walk with drift					
		d. Determi	inistic trend					
ix.	What is	a spurious regre	spurious regression?				[2]	CO1
			Statistically significant but meaningless results generated by regression analysis of non-stationary data					
			The results generated by regression analysis of a station variable dependent on a non-stationary series					
		-	Regression analysis where endogenous and exogenous variables are reversed					
		d. Regress	ion analysis that is	impo	ossible due to lac	k of identification		
X.	What is	the null hypothe	esis of the Dickey-F	ulle	r Test for testing	with no constant and no trend?	[2]	CO1
		$y_t = y_{t-1} + v_t$						
		$b. y_t = \rho y_{t-1} + v_t$						
		$c. y_t = \alpha + py_{t-1} + v_t$						
	$d. y_t = \alpha + py_{t-1} + \lambda t + v_t$							
	Section B					4Qx5	00	
	Attempt all the questions. Each question carries equal marks.					M= 20 Marks	СО	
Q2	Fill in t	he blanks in the	e following ANO	VA	table:			
		Items	Sum of squares	df	Mean square			
		Regression	8552.73	1	?			CO2
		Residual	337.273	8	?		[5]	
		Total	8890	9	?			
	$R^2 = ?$ $F(1, 8) = ?$							

Q3	What do you mean by linear trend model? Interpret the results given below, which represents a linear trend model, where the dependent variable is expenditure on service sector for the period 2000-2017. The result from the regression follows.	[5]	CO2		
	$ExServ_t = 15783.87 + 17633.76t$				
	$t = (0.91) (13.38) r^2 = 0.8996$				
Q4	What is regression through origin? Do you think CAPM model has no intercept? Explain.	[5]	CO2		
Q5	What are various models used for estimating volatilities in the financial return data.	[5]	CO2		
	Section C Attempt all the questions. Each question carries equal marks.				
Q7	What do you mean by ARIMA model. Write all the steps to forecast a financial time series data.	[10]	CO3		
Q8.	Suppose you have two series that you have tested and have found them to be cointegrated. You are interested in explaining the dynamics of the relative short-run movements of the series. Which of the following estimation choices should you use? Explain the reason a. An ARDL model in levels b. A simple regression model with least squares	[10]	CO3		
	c. An error-correction model d. An ARDL model in first-differences				
Q9	Show how a standard AR(1) error model $(y_t = \alpha + \beta_0 x_t + e_t; e_t = \rho e_{t-1} + v_t)$ can be rewritten as an ARDL(1,1) model.	[10]	CO3		
	Section D				
	Answer all questions. Each Question carries 15 Marks.	2Qx15 M= 30 Marks	СО		
Q12	Augmented Dickey-Fuller test for l_FP testing down from 30 lags, criterion AIC sample size 3982 unit-root null hypothesis: a = 1 test with constant including 13 lags of (1-L)l_FP model: (1-L)y = b0 + (a-1)*y(-1) + + e estimated value of (a - 1): -0.000558878 test statistic: tau_c(1) = -1.59761 asymptotic p-value 0.4838				

	1st-order autocorrelation coeff. for e: -0.000 lagged differences: F(13, 3967) = 3.252 [0.0001] with constant and trend including 13 lags of (1-L)1_FP model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + + e estimated value of (a - 1): -0.0015488 test statistic: tau_ct(1) = -1.8604 asymptotic p-value 0.6749 1st-order autocorrelation coeff. for e: -0.000 lagged differences: F(13, 3966) = 3.250 [0.0001] Interpret the above results. Is there any difference between the two models?	[15]	CO4
Q13.	If you have to model credit rating of a company, what are the variables you will include in your model? Explain in detail.	[15]	CO4