Name	:	WUPi	ES		
Enrol	urolment No:				
	UNIVERSITY OF PETROLF End Semester Exa				
Progr	am: MA (Eco)	Semest	er: IV		
Subje	ct/Course: Optimization II	Max	. Marks	: 100	
Cours	rse Code: ECON8017P Duration: 3 Hot			ours	
	IMPORTANT IN	STRUCTIONS			
2. The 3. Aft Blo	e student must write his/her name and enrolment no. e questions have to be answered in this MS Word do er attempting the questions in this document, the stu ackboard.	ocument. dent has to upload this MS Word document			
Q.N	Section A (All are co	ompulsory)	Mark	CO	
0			S	S	
	The techniques of optimization include				
	a) Marginal analysis		2	СО	
1	b) Calculus		2	1	
	c) Linear programming				
	d) All of the above				
2	The equation of a straight line is $2x+3y=6$. Wh intercept and slope of this line?	ich of the following is true of the	2	CO 1	
	a) Intercept=6, slope = $2/3$				

	b) Intercept=2, slope = $-2/3$			
	c) Intercept=6, slope = $-2/3$			
	d) Intercept=3, slope = $-2/3$			
	e) Intercept=2/3, slope = 3			
	What first derivative $(\frac{dy}{dx})$ of any function explains;			
3	(a)relative change in variables (change in y in relation to x)(b) absolute change in the variables	2	CO 1	
	(c). Both (a) & (b)			
	(d). None of the above			
	In economics, which of the following are application of optimization;			
4	a). Cost minimization	2	СО	
	(b). Profit maximization		1	
	(c). Both (a) & (b)			
	(d). None of the above.			
	Which one of the following is the first derivative of log(x);			
	(a). $\frac{1}{x}$		СО	
5	(b). x^2	2	$\begin{vmatrix} 0.0\\1 \end{vmatrix}$	
	(c). $\sqrt{\chi}$			
6	(d). All of the above. Which expansion is represented by the following series	2	CO	
	f(x) =		1	
	$f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$			

	(a). Taylor expansion				
	(b). Maclaurin 's Series				
	(c). Both (a) & (b)				
	(d). None of the above				
	Identify convex in given options				
	a).		CO.		
7	(b).		CO 1		
	(c).				
	(d). None of the above If $\pi(q) = R(q) - C(q)$ (Where $\pi = profit$, $R = Revenue \land C is cost i$ what is profit				
	maximizing condition				
8	a). $\frac{d\pi}{dq} = 0$	2	СО		
0	a). $\frac{d\pi}{dq} = 0$ (b). $\frac{d^2\pi}{dq^2} < 0$		1		
	(c). Both (a) & (b)				
	(d). None of the above				
	If [13 13 617 18 6 6]=?				
	a). 0				
9	(b). 13	2	СО		
,	(c). 11		1		
	(d). None of the above				
10	Difference between the usage of symbols $\Delta \wedge \delta$	2	CO		
	a). Δ is used i denote change \in variable having distinct values (whole numbers)		1		
	•	•	•		

	(b). δ is used $\frac{1}{2}$ denote change \in continuous variables				
	(c). 11				
	(d). None of the above				
	Section B (All are compulsory)				
1	Explain the necessary and sufficient conditions for reaching the optimal solution of any function.	5	CC 2		
2	"We can reach optimal value proposition of function by using only first order (first derivative) condition" Defend the statement using appropriate example.	5	C(2		
3	Find two positive numbers whose sum is 300 and whose product is a maximum. Solve the following LPP;				
	Solve the following LPP;				
4	Objective Function $Z=3x_1+4x_2$ Subject to $4x_1+2x_2 \le 80$ $2x_1+5x_2 \le 180$ $x_1, x_2 \ge 0$	5	C(2		
	Section C				
	Write short notes on any four of the followings;				
4	i-optimization ii-objective function iii-constraints iv-decision variables v-derivatives	10	C(4		
	vi-integrations Find the relative extrema of the function.		C		
5	$y=f(x)=x^3-12x^2+36x+8$	10	4		
6	Explain the graphical conditions where derivative method for optimization fails. Or	10	C0 4		

	Illustrate applications of optimization technique in economics						
			Sec	tion D			
1	for four project respectively a The transport plant to each p 1 2 3 3	cts 1,2,3,4. Ea and daily ceme ation cost per project site ar 1 2 1 5 e optimal distr	2 3 0 8	bly 6, 1,10 truck loa f projects are 7,5,3,	2 loads of trucks. Frupees) from each 4 7 1 9	15	CO 5
2	Calculate the optimal solution for $z=f(x,y)=8x^3-2xy+3x^2+y^2+1$ Or Explain utility of Hessian Matrix to find the optimal solution.				15	CO 5	