Name: Enrolment No:

UNIVERSITY OF PETROLEUM & ENERGY STUDIES End semester Examination – May, 2022

SECTION A

Course: Optimization Modelling for LSCM sector Subject/: MBA LSCM Course Code: LSCM 7015

Semester: II Time: 3 Hours Max. Marks: 100

10Qx2M=20Marks							
S.No.	There is an overabundance of data for the purposes of managerial decision making a) Transactional b) Normative						
Q 1							
Q 2	c) Analytical d) Big Assuming there are no other changes to the input parameters, the change in the objective function value per unit increase to a right hand side of a constraint is called the	CO1					
Q 3	Range of optimality is and range of feasibility is	CO1					
Q 4	The explicit methods for integer programming solution are,,	CO1					
Q 5	The various types of symbolic models are, and	CO1					
Q 6	 What if analysis in spreadsheet comprise of which of the following features a. Goal seek b. Scenario Manager c. Data Table d. Conditional Formatting 	CO1					
Q 7	Iconic model is analogous to the system (True/False)	CO1					
Q 8	The two functions discussed during the class for human resources through employee code table are and						
Q 9	The use of analysis in excel is carried out to conduct forecasting for data	CO1					

	with trend.								
Q 10	variables are under the control of the decision maker.								
Instru	ction: Answer all quest	ions		TION B = 20 Marks	5				
Q 11	What is a linear programming model? How do you solve the model using graphical technique?								
	A department of a company has six employees with six jobs to be performed. The time in hours that each man takes to perform each job is given in the effectiveness matrix.								
	Jobs/Employees	Ι	II	III	IV	V	VI		
	A	7	6	2	8	5	5		
A 15	В	6	8	4	5	4	6		
Q 12	С	9	9	8	12	10	6	CO2	
	D	1	3	1	2	1	1		
	E	16	18	10	14	19	12		
	F	12	14	12	18	20	24		
Q 13	per employee, so as to minimize the total man hours? Solve the following integer programming problem using branch and bound method Max $Z = 5x_1 + 4x_2$ Subject to the constraints i. $x_1 + x_2 \le 5$								
	ii. $10x_1 + 6x_2 \le 45$								
Q 14	and $x_1, x_2 \ge 0$ and integers Use graphical model to solve the following LP problem. Minimize $Z = 600x_1 + 400x_2$ Subject to the constraints i) $3x_1 + 3x_2 \ge 40$ ii) $3x_1 + x_2 \ge 40$ iii) $2x_1 + 5x_2 \ge 44$ and $x_1, x_2 \ge 0$ What is the shadow price for the constraint $2x_1 + 5x_2 \ge 44$?								
Instru	ction: Answer all quest	ions		tion C I=30 Marks	5				
Q 15	Q 15 Determine the initial basic feasible solution to the following transportation problem by using Least cost method and optimal distribution that minimize total shipping cost through Modi method.								

		D1	D2	D3)4	Supp	olv		
	S1	21	16	15			3	11			
	S2	17	18	14		2	23	13			
	S3	32	27	18		4	1	20			
	Demand	6	11	12		1	5				
Q 16	Consider the following trans-shipment problem with two sources S1 and S2, and three destinations D1, D2 and D3. The number of units available in S1 and S2 are 200 and 400 and the product demanded at D1, D2 and D3 are 100, 150 and 350 units respectively. The cost of shipments is given. Determine the initial feasible solution through Vogel's Approximation Method.									CO3	
					irce		-	Destination	1		
	Use Simplex me	thod to solve	the followin	step probl	en Sa		D1	D2	D3		
	Max Z =	$5x_1 + 4x_2$	<u>S1</u>	0	8	0	10	20	30		
		octhe constra		10)	20	50	40		
Q 17		$4x_2 <= 24$	D1	20		0	0	4	10	-CO3	
	$ii. x_1 + 2$	$2x_2 \le 6$	D2 D3	<u>40</u> 60		0	10 80	0 20	20		
	111. Destin	$x_2 \le 1$	D3	00	/	0	80	20	0		
	iv. $x_2 \le 2$										
	and x_1, x_2	₂ >=0		Section D							
Instru Q 18	ction: Read the c The Beaver Con The plant prod assembling faci includes 3000 c employs 150 wo times per chair, t The size of the l taken by the em for June, and 45 July are forecast	mpany manu uces semifin lity. The (u chairs, 1000 orkers in two table, and bo abor force in ployees. Pen for July. Sal	er the follow ifactures and nished produ- nassembled) tables, and 8-hour shifts okshelf are 2 n assembly fa- nding request les of the three	a day, 5 d a day, 5 d 0,40, and 1 acility fluct s for leave ee products	ons chai re as produc shelve ays a 5 min uates s inclu for th	sembl ction es. Th week. utes, r becaus ude 20 ne mon	ed in capacit ne asse The av respective se of th Worke nths of	the comp y of the mbling f erage ass vely. e annual ers for M May, Jun	pany's plant facility sembly leaves ay, 25 ne, and	CO4	
	and selling price for the three products are in Table 2. If a unit is not sold in the month in which it is produced, it is held over for possible sale in the later month. The storage cost is about 2% of the unit production cost. Formulate the mathematical model for the problem.Table 1Sales forecast (units)ProductMayJuneJulyEnd of April inventory										

	Chair	2800	2300	3350	30		
	Table	500	800	1400	100		
	Bookshelf	320	300	600	50		
	Table 2						
	Product		Unit Cost (\$)		Unit Price (\$)		
	Chair		150		250		
	Table	4	00	-	750		
	Bookshelf	6	0	1	120		
Q 19	Should Beaver approve the proposed annual leaves?						