Name: Enrolment No:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022				
Course: Operations Research Program: BBA All / B.Com.(H) / Int. BBA-MBA Course Code: DSQT 2006		Semester: III Time : 03 hrs . Max. Marks: 100		
$\begin{gathered} \text { SECTION A } \\ \text { 10Qx2M=20Marks } \\ \hline \end{gathered}$				
S. No.			Marks	CO
1	Operations Research is a very powerful tool (a) Operations (b) Research (c) Decision making (d) Simulation		2	CO1
2	Operation research approach is (a) Multidisciplinary (b) Artificial (c) Intuitive (d) Limited to some fields		2	CO1
3	A model is (a) An essence of reality (b) An approximation (c) An idealization (d) All of the options		2	CO1
4	Which technique is used in finding a solutio such as profit maximization or cost reductio (a) Queuing theory (b) Network analysis (c) Linear programming (d) None (e) Intuitive	objective,	2	CO1
5	The position in the payoff matrix where the (a) Saddle point (b) Key point (c) Pivot point (d) None of the above	minimax	2	CO1
6	In standard of LPP, the constraint $X+Y+$ (a) Slack variable (b) Surplus variable (c) Artificial variable (d) None		2	CO1
7	The set of values of the decision varia constraints and non-negativity restrictio	ying the d	2	CO1

1	Solve the following LPP by simplex method. $\begin{aligned} & \text { Max } Z=3 X_{1}+8 X_{2} \\ & \text { Subject to constraints } \\ & 5 X_{1}+10 X_{2} \leq 60 \\ & 4 X_{1}+4 X_{2} \leq 40 \\ & X_{1}, X_{2} \geq 0 \end{aligned}$ Also form the dual of the above given LPP.					10	CO 3
2	A manufacturing company produces two types of products A1 and A2. The profits per Kg of the two products are Rs. 40 and Rs. 50 respectively. These two products require processing in three types of machines. The following table shows the available machine hours per day and the time required on each machine to produce one Kg of A1 and A2. a. Formulate the problem in the form of linear programming model. b. Form the dual of the above LPP.					10	CO 3
3	Explain the following term strategy (c) Mixed strategy best strategy for player A a	two B. B1 -5 5 4 3	rson ze Phe fo P2 1 4 0 0	m ga ng g 3 B3 0 6 2 13	b) Pure and find the	10	CO 3
			$\begin{array}{r} \text { SECT } \\ \mathbf{x} 15 \mathrm{M} \end{array}$	$\begin{aligned} & \text {-D } \\ & \text { Mark } \end{aligned}$			
1	Formulate the general LPP the optimal solution by le method.	the co	n tran method	tion Voge	em and obtain Approximation	10	CO4

