Name:

**Enrolment No:** 

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Microbial physiology and metabolism Program: Int.B.Sc.-MSc. Microbiology Course Code: HSMB 2006 Semester: III Duration: 03 hrs. Max. Marks: 100

**Instructions:** 

| S. No. | Section A                                                       | Marks | COs |
|--------|-----------------------------------------------------------------|-------|-----|
|        | Short answer questions/ MCQ/T&F                                 |       |     |
|        | (20Qx1.5M= 30 Marks)                                            |       |     |
| Q 1    | Nitrifying bacteria are:                                        | 1.5   |     |
|        | a) Chemoheterotroph                                             |       |     |
|        | b) Chemoautotroph                                               |       |     |
|        | c) Photoheterotroph                                             |       |     |
|        | d) Photolithotroph                                              |       | CO2 |
| Q 2    | Passive Transport occurs                                        | 1.5   |     |
|        | a) Along the concentration gradient                             |       |     |
|        | b) Without the use of metabolic end product                     |       |     |
|        | c) Both                                                         |       |     |
|        | d) None                                                         |       | CO3 |
| Q 3    | The organism which grows best above 45°C called                 | 1.5   |     |
|        |                                                                 |       | CO2 |
| Q 4    | The conversion of nitrogen to nitrogenous compound is           | 1.5   |     |
|        | called as                                                       |       |     |
|        | a. Denitrification                                              |       |     |
|        | b. Nitrogen assimilation                                        |       |     |
|        | c. Nitrogen fixation                                            |       |     |
|        | d. Nitrification                                                |       | CO3 |
| Q 5    | The type of fermentation observed in yeasts is                  | 1.5   |     |
|        | a. acrylic fermentation                                         |       |     |
|        | b. lactic acid fermentation                                     |       |     |
|        | c. pyruvic fermentation                                         |       |     |
|        | d. alcoholic fermentation                                       |       | CO1 |
| Q 6    | Radioisotopes are frequently used in the study of cells.        | 1.5   |     |
| C      | Assume a culture of <i>E. coli</i> is grown in a culture medium | 110   |     |
|        | containing radioactive phosphorous. At the end of 48 hours, it  |       |     |
|        | is expected to find the radioactive label located in            |       |     |
|        | a. enzymes                                                      |       |     |
|        |                                                                 |       |     |
|        | b. RNA                                                          |       |     |
|        |                                                                 |       | CO1 |



|      | c. phospholipids                                                                                                                                                                                                                                                                                                |                                        |     |            |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|------------|
|      | d. all of these                                                                                                                                                                                                                                                                                                 |                                        |     |            |
| Q 7  | Which of the following methods does not require any carrieror channel for transport of substances?a. secondary active transportb. facilitated diffusionc. simple diffusiond. primary active transport                                                                                                           |                                        | 1.5 | CO3        |
| Q 8  | Match the following-                                                                                                                                                                                                                                                                                            |                                        | 1.5 |            |
|      | a.simple diffusion                                                                                                                                                                                                                                                                                              | 1. Movement via a membrane<br>protein  |     |            |
|      | b. secondary active<br>transport                                                                                                                                                                                                                                                                                | 2. Energy from hydrolysis of ATP       |     |            |
|      | c. primary active<br>transport                                                                                                                                                                                                                                                                                  | 3. Stored energy from ionic gradient   |     |            |
|      | d. facilitated<br>diffusion                                                                                                                                                                                                                                                                                     | 4. Movement without a membrane protein |     |            |
|      |                                                                                                                                                                                                                                                                                                                 |                                        |     | CO2        |
| Q 9  | <ul> <li>What is a group translocation?</li> <li>a. The process of transporting and transforming the molecules at the same time</li> <li>b. The process of transporting and transforming the molecules one at a time</li> <li>c. The process of transporting and transforming the molecules randomly</li> </ul> |                                        | 1.5 | CO2        |
| Q 10 | A group translocation system presents in bacteria that aids in                                                                                                                                                                                                                                                  |                                        | 1.5 | 02         |
|      | the uptake of sugara.Phosphotransferase systemb.Twin-arginine translocation pathwayc.Phosphotransferase system and Twin-arginine                                                                                                                                                                                |                                        |     | <b>CO2</b> |
| Q 11 | translocation pathway                                                                                                                                                                                                                                                                                           |                                        |     | CO2        |
|      | In aerobic respiration, the terminal electron acceptor is:                                                                                                                                                                                                                                                      |                                        |     |            |
|      | a) Ox<br>b) Nit                                                                                                                                                                                                                                                                                                 | -                                      |     |            |
|      | b) Nitrogen<br>c) Hydrogen                                                                                                                                                                                                                                                                                      |                                        |     | CO3        |

|      | d) nitrate                                                     |     |     |
|------|----------------------------------------------------------------|-----|-----|
| Q 12 | In prokaryotes, which of the following is true?                | 1.5 |     |
|      | a. As electrons are transferred through an ETS, H+ is          |     |     |
|      | pumped out of the cell.                                        |     |     |
|      | b. As electrons are transferred through an ETS, H+ is          |     |     |
|      | pumped into the cell.                                          |     |     |
|      | c. As protons are transferred through an ETS, electrons        |     |     |
|      | are pumped out of the cell.                                    |     |     |
|      | d. As protons are transferred through an ETS, electrons        |     |     |
|      | are pumped into the cell.                                      |     |     |
|      |                                                                |     | CO3 |
| Q 13 | Transport proteins that move substrates in opposite directions | 1.5 |     |
|      | across the cell membrane are                                   |     |     |
|      | a. uniporters                                                  |     |     |
|      | b. symporters                                                  |     |     |
|      | c. antiporters                                                 |     |     |
|      | d. xenoporters                                                 |     |     |
|      |                                                                |     | CO2 |
| Q 14 | In prokaryotes, which of the following is true?                | 1.5 |     |
|      | I. As electrons are transferred through an ETS, H+ is          |     |     |
|      | pumped out of the cell.                                        |     |     |
|      | II. As electrons are transferred through an ETS, H+ is         |     |     |
|      | pumped into the cell.                                          |     |     |
|      | III. As protons are transferred through an ETS, electrons      |     |     |
|      | are pumped out of the cell.                                    |     |     |
|      | IV. As protons are transferred through an ETS, electrons       |     |     |
|      | are pumped into the cell.                                      |     |     |
| 0.15 | Which of the following is not on electron corrier within on    | 1.5 | CO1 |
| Q 15 | Which of the following is not an electron carrier within an    | 1.5 |     |
|      | electron transport system?                                     |     |     |
|      | a. flavoprotein                                                |     |     |
|      | b. ATP synthase                                                |     |     |
|      | c. ubiquinone                                                  |     |     |
|      | d. cytochrome oxidase                                          |     | CO1 |

| Q 16 | Which of the following does not occur during cyclic             | 1.5 |     |
|------|-----------------------------------------------------------------|-----|-----|
|      | photophosphorylation in cyanobacteria?                          |     |     |
|      | a. electron transport through an ETS                            |     |     |
|      | b. photosystem I use                                            |     |     |
|      |                                                                 |     |     |
|      | c. ATP synthesis                                                |     |     |
|      | d. NADPH formation                                              |     | CO1 |
| Q 17 | The enzyme responsible for CO2 fixation during the Calvin       | 1.5 |     |
|      | cycle is called                                                 |     |     |
|      |                                                                 |     | CO1 |
| Q 18 | Name one ETC uncoupling agent.                                  | 1.5 | CO1 |
| Q 19 | Algae are                                                       | 1.5 |     |
|      | a) Photoautothroph                                              |     |     |
|      | b) Pholithotroph                                                |     |     |
|      | <ul><li>c) Chemoautotroph</li><li>d) Chemoheterotroph</li></ul> |     | CO2 |
| Q 20 | d) Chemoheterotroph                                             | 1.5 |     |
| Q 20 | In the passive diffusion, solute molecules cross the membrane   | 1.5 |     |
|      | as a result of                                                  |     |     |
|      | (i) Concentration difference                                    |     |     |
|      | (ii) pressure difference'                                       |     |     |
|      | (iii) all of these                                              |     |     |
|      | (iv) ionic difference                                           |     | CO1 |
|      | Section B                                                       |     |     |
|      | (4Qx5M=20 Marks)                                                |     |     |
| Q 1  | What is a multi-enzyme complex? Cite an example and             | 5   |     |
| C    | explain how it operates?                                        | -   | CO1 |
| Q 2  | What is the difference between cyclic and non-cyclic            | 5   |     |
|      | phosphorylation and where are they observed?                    |     | CO3 |
| Q 3  | How does oxygen affect microbial growth? Characterize           | 5   | CO2 |
|      | microbes based on their growth on oxygen tension.               |     | 02  |
| Q 4  | Distinguish between how chemiosmotic potential is generated     | 5   | CO3 |
|      | in bacteria ( <i>E. coli</i> ) versus mammals.                  |     |     |
|      | Section C<br>(2Qx15M=30 Marks)                                  |     |     |
| Q 1  | Yeast were shifted from oxygenic atmosphere to                  | 15  |     |
| •    | anoxygenic atmosphere and glucose consumption increased         |     |     |
|      | massively. Based on this answer the following questions:        |     |     |
|      | (i) What is this phenomenon called? Who discovered              |     |     |
|      | (i) What is this phenomenon curica. Who also verea              |     |     |

|     | (ii) What is the se                                     | in as habing this shares are a 2 (2)                                          |    |     |
|-----|---------------------------------------------------------|-------------------------------------------------------------------------------|----|-----|
|     |                                                         | ience behind this phenomenon? (2)<br>n/fermentation seen in bacteria also? If |    |     |
|     |                                                         |                                                                               |    |     |
|     | · ·                                                     | stinguish between yeast and bacterial                                         |    |     |
|     |                                                         | name of yeast and name of bacteria                                            |    |     |
|     | involved. (5)                                           |                                                                               |    |     |
|     | · · /                                                   | between linear and branched                                                   |    |     |
|     | -                                                       | bathways with example. (2)                                                    |    |     |
|     |                                                         | between homolactate and heterolactate                                         |    |     |
|     | fermentation.                                           |                                                                               |    |     |
| Q 2 | Bacteria were grown in media with phosphate deficiency. |                                                                               | 15 |     |
|     |                                                         | ysiological changes; radioactive tracer                                       |    |     |
|     | was added. Based on                                     | this; answer the following:                                                   |    |     |
|     | · · · · · · ·                                           | of glucose utilization are likely to be                                       |    |     |
|     | upregulated?                                            | (1)                                                                           |    |     |
|     | (ii) Briefly explai                                     | n the pathway with suitable flowchart.                                        |    |     |
|     | (5)                                                     |                                                                               |    |     |
|     | (iii) If this pathway                                   | y is activated under phosphate                                                |    |     |
|     | deficiency; wl                                          | nen will it be repressed? (1)                                                 |    |     |
|     | (iv) What is the to                                     | xic metabolite that is produced in this                                       |    |     |
|     | pathway? (1)                                            |                                                                               |    |     |
|     | (v) This toxic me                                       | tabolite does not accumulate normally                                         |    |     |
|     | in cell. Why?                                           | (2)                                                                           |    |     |
|     | (vi) With the help                                      | of flow chart explain Entener                                                 |    |     |
|     | Duodoroff pat                                           | hway in bacteria. (5)                                                         |    | CO4 |
|     |                                                         | Section D                                                                     |    |     |
|     |                                                         | (2Qx10M=20 Marks)                                                             |    |     |
| Q 1 | 'TCA cycle is both an                                   | nphibolic.' Comment on the statement                                          | 10 | CO3 |
|     | with flow charts with                                   | view of bacteria especially aerobes and                                       |    |     |
|     | anaerobes.                                              |                                                                               |    |     |
|     |                                                         | OR                                                                            |    |     |
|     | Explain photosynthes                                    | is with flowcharts and examples of                                            |    |     |
|     | microbes where it hap                                   | pens.                                                                         |    |     |
| Q 2 |                                                         | cation? Why do bacteria prefer group                                          | 10 | CO2 |
|     | translocation over simple                               |                                                                               |    |     |
| i   |                                                         | L                                                                             | 1  |     |