Name:			<u>с</u>	
Enrolme	Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
		mination, December 2022		
	Course: Fluid Flow Semester: III			
C	n: BTech. Food Technology	Time: (
No. of p	Code: MECH 2033	Max. M	larks: 100	
	ions: Answer all the questions			
		CTION A		
	(20Q x 1	.5M = 30Marks)		
S. No.			Marks	CO
Q1	The unit of shear strain is N/m^2			
	a) N/m ² b) m/s			GO 1
	c) unit less		1.5	CO1
	d) Pa			
Q2	Which of the following is not a unit of pr	ressure		
	a) Pa			
	b) kPa		1.5	CO1
	c) N/m^2			
	d) bar			
	e) Ns/m ²			
Q3	For a compressible flow			
	a) Pressure remains constant			
	b) Temperature remains constant		1.5	CO1
	c) Density remains constant			
	d) Velocity remains constant			
Q4	For a steady flow			
	a) Pressure remains same at all the l	ocations		
	b) Velocity remains same at all the l		1.5	CO1
	c) Velocity changes with gradually	time		
	d) Velocity remains constant with ti	me		
Q5	100 stokes is equal to			
×-	a) $0.0001 \text{ m}^2/\text{s}$			
	b) $0.001 \text{ m}^2/\text{s}$		15	CO1
	c) $0.01 \text{ m}^2/\text{s}$		1.5	CO1
	d) $0.1 \text{ m}^2/\text{s}$			

Q6	The unit of dynamic viscosity is a) Ns b) N/m ² c) Ns/m ² d) Stokes	1.5	CO1
Q7	Bulk modulus is the ratio of a) shear stress to volumetric strain b) volumetric strain to shear stress c) compressive stress to volumetric strain d) volumetric strain to compressive stress	1.5	CO1
Q8	What is the correct formula for absolute pressure? a). Pabs = Patm – Pgauge b). Pabs = Pvacuum – Patm c). Pabs = Pvacuum + Patm d). Pabs = Patm+ Pgauge	1.5	CO1
Q9	 For a Newtonian fluid (a) Shear stress is proportional to shear strain (b) Rate of shear stress is proportional to shear strain (c) Shear stress is proportional to rate of shear strain (d) Rate of shear stress is proportional to rate of shear strain 	1.5	CO1
Q10	The pressure at a point in a fluid will not be same in all directions when the fluid is a) Moving b) Viscous c) Viscous and static d) Viscous and moving 	1.5	CO1
Q11	 For the flow through a horizontal duct a) Pressure decreases with the decrease in velocity b) Pressure increases with the increase in velocity c) Pressure decreases with the increase in velocity d) Pressure does not change with the change in velocity 	1.5	CO2
Q12	 Skin friction drag will be zero for a) Incompressible flow b) Ideal flow c) Non-Newtonian flow d) Laminar flow 	1.5	CO2

Q13	Pitot tube is used for the measurement of		
	a) Pressureb) Densityc) Flow rated) Flow velocity at a point	1.5	CO2
Q14	Bernoulli's equation is deals with the law of conservation of a) mass b) flow rate c) energy d) rate of discharge 	1.5	CO2
Q15	 For the flow of water through a duct, the viscous force acting on the duct's wall a) Decreases with increase in flow velocity b) Remains constant with flow velocity c) Increases with the increase in diameter of the duct d) Increases with increase in rate of discharge 	1.5	CO2
Q16	The mathematical expression for the Hydrostatic law is	1.5	CO3
Q17	An ideal fluid is a) inviscid b) incompressible c) both inviscid and incompressible d) none of the above	1.5	CO3
Q18	 Viscosity of a liquid a) Increases with the increase in temperature b) Increases with the decrease in temperature c) Changes only with change in Pressure d) Decreases with the decrease in temperature 	1.5	CO3
Q19	 Viscosity of a liquid is measured using a) Barometer b) Venturimeter c) Pitot-static tube d) Capillary tube method 	1.5	CO3

Q20	Which is true for a Bingham plastic		
	 a) Shear stress is always zero b) Shear strain is always zero c) Behaves like liquid below a yield shear stress d) Behaves like a solid below a yield shear stress 	1.5	CO3
	SECTION B (4Qx5M= 20 Marks)		
Q1	Differentiate between a) Newtonian and non-Newtonian fluid, b) Compressible and incompressible flow	5	C01
Q2	Define Reynolds Number. Write down its mathematical expression and its physical significance.	5	CO2
Q3	What are the different sources of energy losses in a pipe flow? Explain in detail.	5	CO2
Q4	Why the viscosity of liquids decreases with increase in temperature and the viscosity of gases increases with the increase in temperature?	5	CO3
	SECTION-C		
	(2Qx15M=30 Marks)		
Q1	In a food processing unit, hot Canola oil is flowing through a circular pipe (diameter 5 cm) at a velocity of 1.5 m/s. Given: density of the oil is 750 kg/m ³ and the dynamic viscosity is 7.5×10^{-3} Ns/m ² . [3 ×5 marks]		
	 a) Calculate the flow rate or rate of discharge through the pipe. b) The total volume and mass of oil supplied through the pipe in 10 minutes. c) Calculate the Reynolds number of the flow. And comment about the nature of the flow through the pipe i.e., is this a laminar flow or a turbulent flow. Your comments should be based on numerical analysis. 	15	CO2
Q2	Define the followings and give a few examples of each.a) Newtonian fluidsb) Ideal fluidsc) Bingham plasticsd) Shear thickening fluidse) Shear thinning fluids	15	CO3
	Draw the of Rheological diagram (shear stress vs velocity gradient curves) for the above materials.		

	SECTION-D (2Qx10M=20 Marks)		
Q1	Water is flowing through a horizontal circular pipe. You are required to calculate the loss of energy head between the two points A and B, as shown in figure. Given: Pressure and velocity at point A are 12kPa and 5m/s; Pressure and velocity at point B are 10kPa and 4 m/s.	10	CO2
Q2	The velocity distribution for flow over a flat plate is given by $u = (3y-4y^2)$, where u is the velocity (in m/s) at a distance y meter above the plate. Determine the shear stress at $y = 10$ cm. Also, calculate the wall shear stress and shear force (per unit area) acting on the plate. The viscosity of the liquid is 0.8 poise.	10	CO2