Name:		70	22	
Enrolm	nent No:			
		OLEUM AND ENERGY STUDI Amination, December 2022	ES	
			Semester: IIIrd Time :03 hrs. Max. Marks: 100	
Instruc	tions:			
Q.No	Section A		(20x1.5= 30 Marks)	COs
	MCQs/Short answer question	s/True &False		
Q	Statement of question (each question carries 1.5 marks)			CO
1.	The numbers of chromosomes in a normal	human being	1.5	C01
	a) 46 b) 73 c) 43 d) 42			
2.	Cell organelle also referred to as power hou	use of a cell is	1.5	C01
	 a) Nucleus b) Mitochondria c) Golgi complex d) Cell membrane e) None of the above 			
3.	Ribosomes are synthesized in part of the ce	ell called	1.5	C01
	 a) Golgi complex b) Mitochondria c) Nucleolus d) Nucleus e) None of the above 			
4.	Phagocytosed food is digested with the help	o of enzymes which are	1.5	CO2
	 present in a) Ribosome b) Lysosomes c) Mitochondria d) Golgi complex e) None of the above 			
5.	 A definite shape given to cell is by a) Cell membrane b) Ribosome c) Cell wall d) Nucleus e) None of the above 		1.5	CO1

6.	Fill in the blanks:	1.5	CO3
	As the growing polypeptide chain enters the lumen of the ER, the signal sequence is cleaved by		
7.	Lysosomes which eat parts of their own cell in a state of starvation are called. Autophagosomes Autophagocytosis Auto retarded Auto destruction None of the above 	1.5	CO2
8.	Compare between anterograde and retrograde transport vesicles?	1.5	CO2
9.	Microfilaments are composed of a protein called a) Tubulin b) Actin c) Myosin d) Chitin 	1.5	CO:
10.	What is the role of Signal recognition particle (SRP) in the events of protein targeting?	1.5	CO
11.	An organelle that mainly serves as a packaging area for molecules that are distributed across the cell and are called? a) Golgi apparatus b) Mitochondria c) Plastids d) Vacuole	1.5	CO
12.	In the below-given list, which one includes the blood tissue? a) Muscle tissue b) Connective tissue c) Epithelial tissue d) Nervous tissue	1.5	CO
13.	State True or False: The endocytosis happens in the apical surface and the exocytosis happens in the baso-lateral surface a) True b) False	1.5	CO
14.	What is an "Uptake targeting Sequence". Explain with the help of a relevant example.	1.5	CO
15.	What is a "Translocon" in protein sorting? Explain with the help of an example.	1.5	CO
16.	State True or False	1.5	CO

	The unidirectional transfer of a protein into an organelle, without sliding back out into the cytoplasm, is usually achieved by coupling translocation to an energetically favorable process such as hydrolysis of ATP		
	c) True d) False		
17.	Briefly describe what is "Co-translational translocation"?	1.5	CO3
18.	Compare between v-SNARE and t-SNARE?	1.5	CO4
19.	 Glycolipids in the plasma membrane are located at a) Inner leaflet of the plasma membrane b) The outer leaflet of the plasma membrane c) Evenly distributed in the inner and outer leaflets d) It varies according to cell types 	1.5	CO4
20.	 Lysosomes are known as "suicidal bags" because a) Parasitic activity b) Presence of food vacuole c) Hydrolytic activity d) Catalytic activity 	1.5	CO4
	Section B	(4x5=20 Marks)	CO
Q	Statement of question (each question carries 5 marks)		
1.	a) Compare between adherens junction and desmosomes.b) What are ATP-powered pumps. Explain with the help of a relevant example.	2+3	C01
2.	 a) Give a detailed overview of a vesicle budding off from a parent membrane and its fusion with a target membrane. b) Compare between COPI and COPII vesicles in terms of coat proteins and transport step mediated 	2+3	CO2
3.	 a) How do Rab-GTPases control docking of vesicles on target membrane b) Describe the role of NSF and alpha SNAP in vesicle fusion. 	2+3	C03
4.	a) Describe different stages of mitotic cell cycle. Draw a well labelled diagram for each stage.b) Discuss the role of cohesin in mitotic cycle.	3+2	CO4
	Section C	(2x15=30 Marks)	
Q	Statement of question (Case studies) (each question carries 15 marks)		CO
1.	Like synthetic lipid bilayers, cell membranes allow small nonpolar molecules to permeate by diffusion. Cell membranes, however, also have to allow the passage of various polar molecules, such as ions, sugars, amino acids, nucleotides, water, and many cell metabolites that cross	15	C01

occur		nd in all type two major in fall? Give anisms for tr	s of biologica classes in an example f cansporting i	al membrane which the for each ons and sma	es. membrane Ill molecules		
	across cell men	ibranes, fill f	the underlyir	ng table with	n (+) or (-)		
			Transport	mechanism			
	Property	Passive Diffusion	Facilitated Diffusion	Active transport	Co- transport		
	Requires specific						
	proteins Solute is						
	transported against its						
	gradient Coupled to						
	ATP hydrolysis						
	Driven by movement of co-						
	transported ion down its						
	conc. Gradient						
c)	c) This schematic diagram shows three different transporters.						
	1	2	3				
		\downarrow	В	$\downarrow \downarrow$			
			ers 1, 2, and iffusion acro		ter 1, if the		
	solute is iii) State th	s moving do e kind of tra	wn the conce nsport acros	entration gra s transporte	dient? rs 2 and 3, if		
		solute B is	moving ag		on gradient oncentration		
	gradien iv) Briefly	explain the	mechanism rs (represen		transport in		
	gradien iv) Briefly	explain the l transporter resents an o	rs (represen	ted by 2&3) protein impo	ort from the	15	CO

	With reference to the figure answer the following questions: a) Label the key candidates A-H participating in the import or targeting of cytosolic proteins to the mitochondrion or mitochondrial matrix. b) Give a detailed account of steps 1-7.		
	 c) What could happen if B fails to associate with the nascent protein that is to be imported? d) Yeast mutants is defective in F, how this mutation would affect the conformation of the protein imported in the mitochondrial matrix? e) What does "Tim" in Tim 23/17 or 44 stand for? 		
	Section D	(2x10=20 Marks)	
Q	Statement of question (each question carries 10 marks)		CO
1.	 a) Give a detailed overview of the model for regulation of the eukaryotic cell cycle, describing the interaction of stage specific cyclins-CDK complexes and their regulators in G1, S, G2 and M phases of mitosis. b) Give a detailed account of the three crucial mitotic checkpoints. Draw a well labelled diagram for the same. c) Discuss the role of p53 in DNA damage checkpoints. 	5+3+2	C04
2.	 a) Explain the "Fluid mosaic model" for the lipid bilayer membrane structure. Draw a well labelled diagram for the same. b) Differentiate between integral, peripheral and lipid anchored membrane proteins? What is the basis for their classification? 	5+3+2	C02

-	Describe the different types of cytoskeleton prevalent in the cell. Give one example for each	
	dive one example for each	