N	am	Δ,	•
Τ.	am	·	۰

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Microbial Technology
Program: B.Tech Biotechnology
Course Code: HSBT2004

Semester : III
Duration : 3 Hours
Max. Marks: 100

Instructions: Read all questions carefully

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Which of the following is not a cereal or vegetable or fruit-	1.5	CO1
	based fermented product?		
	(A) Wine (B) Sauerkraut (C) Beer (D) Vinegar		
Q 2	Anaerobic respiration by yeast produces	1.5	CO1
	(A) CO ₂ (B) Wine and Beer (C) Alcohol (D) All of the above		
Q 3	In dough, the starch is digested into sugar through.	1.5	CO1
	(A) Amylase (B) Protease (C) Maltase (D) Lactase		
Q 4	Beer is produced by the fermentation of?	1.5	CO1
	(A) Barley (B) Grape (C) Rice (D) Oranges		
Q 5	Which of the following is NOT a criterion to create a media?	1.5	CO2
	(A) It should be able to produce the maximum yield of product		
	(B) It should be able to produce the maximum concentration		
	of product		
	(C) It should be easily sterilized		
	(D) It should permit the maximum rate of product formation,		
	no matter how costly it is		
Q 6	Which of the following is NOT a criterion for the choice of an	1.5	CO2
	organism?		
	(A) The organism must be genetically stable		
	(B) The organism must be able to produce a high yield of		
	product		
	(C) The optimum temperature for the growth of an organism		
	must be above 50°C		
	(D) The organism must be able to grow in an easily available		
	nutrient medium		

Q 7	Which of the following method is useful for the isolation and	1.5	CO2
	detection of organisms having the ability to produce organic		
	acids?		
	(A) Crowded plate technique		
	(B) Auxanographic technique		
	(C) Enrichment culture technique (D) Indicator dye technique		
Q 8	Which of the following is NOT a cryoprotective agent?	1.5	CO2
	(A) DMSO (B) Glycerol (C) Ethylene glycol (D) Paraffin wax		
Q 9	Which of the following sensor is used to measure the	1.5	CO3
	acid/alkali addition?		
	(A) pH (B) Redox (C) Temperature (D) Oxygen		
Q 10	The agitator is required to?	1.5	CO3
	(A) Provide air (B) Mixing objectives (C) Purify the product		
	(D) Sterilize the media		
Q 11	A period during which the growth rate of cells gradually	1.5	CO3
	increases is known as?		
	(A) Lag phase (B) Log phase (C) Stationary phase		
	(D) Death phase		
Q 12	The Fed-batch fermenter is a/an culture system	1.5	CO3
	(A) Open (B) Closed (C) Isolated (D) Semi-closed		
Q 13	The fermentation of milk to form cheese is done by	1.5	CO4
	bacterium species?		
	(A) Saccharomyces spp. (B) Lactobacillus spp.		
	(C) Aspergillus spp. (D) Penicillium spp.		
Q 14	Citric acid is used in the manufacture of jams and jellies	1.5	CO4
	(A) True (B) False		
Q 15	Which of the following fungi produces alpha amylase?	1.5	CO4
	(A) Bacillus subtilis (B) Penicillium (C) Bacillus diastaticus		
	(D) Bacillus megaterium		
Q 16	The volume of alcohol in beers is measured by?	1.5	CO4
	(A) Alcohol by weight (B) Alcohol by mass		
	(C) Alcohol by percentage (D) Alcohol by volume		
Q 17	Which of the following bond/interaction is not involved in	1.5	CO5
	adsorption?		
	(A) Covalent bond (B) Ionic interaction (C) Hydrogen bond		
	(D) Van der Waals forces		
Q 18	Which of the following is not an advantage of immobilization?	1.5	CO5
	(A) Minimum reaction time		
	(B) Cheap isolation of cells/enzymes		
	(C) Can be reused (D) Less labour input		

Q 19	What does the following diagram represent?	1.5	CO5
	6		
	6		
	M E		
	6		
	6		
	(A) Covalent binding (B) Adsorption (C) Entrapment (D)		
	Membrane confinement		
Q 20	Which of the following is not a property of carrier matrices?	1.5	CO5
	(A) Thermal stability (B) Stability of the material		
	(C) Physical strength (D) Easily available		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	List any five components of the fermenter and their function.	5	CO1
Q 2	Describe the stages involved in the selection of industrially	5	CO2
	important microbes.		002
Q 3	Distinguish between oxygen uptake rate (OUR) and oxygen	5	
	transfer rate (OTR) and explain the formula to measure OUR		CO3
0.4	and OTR.		
Q 4	Illustrate the design of a solid-state fermenter and list the solid	5	CO3
	substrates used. Section C		
	(2Qx15M=30 Marks)		
Q 1	A scientist wants to produce an antibiotic that should be active	15	CO2
	at higher pH conditions.		
	A. How do you isolate microbes to produce the antibiotic		
	using the methods of isolation, enrichment, screening,		
	and strain improvement?		
	B. Explain the type of fermentation process you would		
0.2	apply to produce the antibiotic and why?	1.5	007
Q 2	A dairy company would like to produce lactose-free milk with	15	CO5
	the use of enzyme immobilization technology. A. Explain what anzyme you would use to immobilize to		
	A. Explain what enzyme you would use to immobilize to produce lactose-free milk and what type of		
	immobilization method you would apply and why?		
	miniotinzation method you would apply and why:		

	B. Write the applications of enzyme immobilization in		
	industries and list the major products obtained using		
	the immobilized enzyme		
	Section D		
(2Qx10M=20 Marks)			
Q 1	Discuss strain improvement and its significance. Write any	10	CO2
	two different methods used for strain improvement with an		
	illustration.		
Q 2	Write the process of beer production and the fermentation	10	CO4
	steps involved in detail with an illustration.		