Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Process Calculation Program: B. Tech. Biotechnology Course Code: HSBT 2003 Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Instructions: Assume any missing data. The notations used here have the usual meanings. Draw the diagrams, wherever necessary.

Q. 1	Sectio	on-A (20Q x 1.5M= 30)		COs
Ι	1 BTU/ft ³ is approximately equal to	kcal/m ³ .		
	(a) 1	(b) 9	1.5	CO1
	(c) 4	(d) 252		
II	Volume (L) representation of a real gas is given by the equation			
	$\mathbf{V} = \mathbf{a} \mathbf{T} + \mathbf{b} \mathbf{T} \mathbf{P} + \mathbf{c} \mathbf{T} \mathbf{P} \mathbf{n}$			
	where: a, b, c are constants and T, P, n are temperature (K), pressure (atm) and number of moles,			
	respectively.		1.5	CO1
	What is the unit of c?			
	(a) L/K-atm	(b) L/K-atm-mol		
	(c) K/L-atm-mol	(d) None of these		
III	Number of moles of the solute dissolved in 1 kg of solvent is called its			
	(a) normality	(b) molarity	1.5	CO1
	(c) molality	(d) equivalent weight		
IV	Hydrogen and nitrogen react to form an	nmonia according to the reaction,		
	$3 H_2 + N_2 \rightarrow 2 NH_3$			
	If 4.0 moles of H_2 and 2.0 moles of N_2 a	are fed, which is a limiting reactant?	1.5	CO2
	(a) Hydrogen	(b) Nitrogen		
	(c) Ammonia	(d) None of the given		
V	Concept of material balance is based upon			
	(a) Conservation of mass	(b) Conservation of energy	1.5	CO2
	(c) Conservation of momentum	(d) Conservation of Volume		
VI	A fluid enters system at the rate of 10 liters/s and leaves in two pathways one with 7 liters/s and			
	other with 3 liters/s. The type of flow it is		15	cor
	(a) Steady state	(b) Unsteady state	1.5	CO2
	(c) batch	(d) None of these		
VII	In the given tank, there are two feeds and one output. Consider a 2 hour operation; the feed rates			
	are 4000 kg/hr and 6000 kg/hr. The accumulated material inside the tank is 2000 kg. What is the		1.5	CO2
	output rate kg/hr of the material?			

	(a) 9000	(b) 7000		
	(c) 8000	(d) 6000		
VIII	15 kg of oxygen and 15 kg of hydrogen	are mixed together. Which one will have greater partial		
	pressure in the resulting mixture?			
	(a) Hydrogen	(b) Oxygen	1.5	CO2
	(c) Both have same partial pressure	(d) Partial pressure depends on their vapor pressure		
IX	In the following, steam reforming reactio	n of methane		
	$2CH_4 + H_2O \rightarrow CO + CO_2 + 7H_2$			
	The limiting reactant is		1.5	CO2
	(a) CH ₄	(b) H ₂ O		
l	(c) CO	(d) CO ₂		
Х	For the given reaction			
	$C_5H_{12} +$	$8 \text{ O}_2 \rightarrow 5 \text{ CO}_2 + 6 \text{ H}_2\text{O}$		
	If 2 moles of C_5H_{12} and 8 moles of O_2 a	re present initially, which is the excess reactant in the	1.5	CO2
	reaction		1.5	02
	(a) O ₂	(b) C_5H_{12}		
	(c) CO ₂	(d) H ₂ O		
XI	In the van der Waals equation of state, the term that accounts for the intermolecular forces is			
	(a) $V-b$	(b) a/V^2	1.5	CO1
	(c) RT	(d) (RT) ⁻¹		
XII	Two effluent streams are mixed. One stream contains 10% salt and the other contains 0% salt. The			
	combined stream contains 2% salt. The ra		1.5	CO2
	(a) $1:4$	(b) 1:5		
3/111	(c) 1:2 (d) 1:8			
XIII	The compressibility factor for an ideal ga			
	(a) 1 (c) 100	(b) 0(d) None of these	1.5	CO2
VIV				
XIV	The volume of an ideal gas, when you double the pressure at a fixed temperature, becomes (a) double (b) half		1 -	CO 2
	(a) double(c) doesn't change	(d) None of these	1.5	CO2
XV	~ , č			
ΛV	A cooking gas cylinder can withstand a pressure of 15 atm. The pressure inside the cylinder is 12 atm at 27 0 C. During sudden fire in the building the temperature starts rising. At what temperature			
	will the cylinder explode?	maning the temperature starts fishig. At what temperature	1.5	CO2
	(a) 306.75 K	(b) 240 K	1.3	02
	(c) 375 K	(d) 510 K		
XVI	Zero percent relative saturation means			
	I I I I I I I I I I I I I I I I I I I			
	(a) 100 % vapor in the air	(b) 75 % vapor in the air	1.5	CO1

XVII	The usual temperature of a gas or liquid is			
	(a) Dry bulb temperature (b) Wet bull	o temperature	1.5	CO1
	(c) Normal temperature (d) special to	emperature		
XVIII	The absolute humidity of air at 101.3 kPa is measured to be 0.02 kg of water per kg of dry air. The			
	partial pressure of water vapor in the air is		1 =	CO 2
	(a) 3.16 kPa (b) 1.26 kPa	a	1.5	CO2
	(c) 5.96 kPa (d) 6.32 kPa	a		
XIX	Heat capacity of a gas can be approximately expressed as $C_p = 26.693 + 7.365 \times 10^{-3}$ T, where C_p			
	is in J/mol-K and T is in K. The heat given off by one mol of air, when cooled at 1 atmospheric			
	pressure from 773 K to 173 K is		1.5	CO2
	(a) 8.11 kJ (b) 18.11 kJ			
	(c) 12.11 kJ (d) 50 kJ			
XX	At higher temperature, molal heat capacities of most of the gases at constant pressure			
	with increase in temperature.		15	CO1
	(a) increases (b) decrease	es	1.5	CO1
	(c) doesn't change (d) None of	these		
	Section-B (4Q x 5M = 2	0 M)		
2.	Define the following terms (any two):			
	(a) Limiting reactant		_	
	(b) Percent conversion		5	CO1
	(c) Selectivity			
3.	What are the characteristics of an ideal gas?		5	CO3
4.	Fresh juice contains 14% solids and 86% water by weight an	d is to be concentrated to contain 42%		
	solids by weight. In a single evaporator system, it is found	that the volatile constituents of juice		
	escape with water leaving the concentrated juice 56%, with	a flat taste. To overcome this problem		
	part of the fresh juice, bypass the evaporator. Calculate	the fraction of juice that bypass the		
	evaporator.		5	CO4
	Feed 100 kg Fresh juice Solids = 14% Bypass juice Solids = 14%	Concentrated juice Solids = 42%		
5.	The vapor pressure P^s of n-heptane is given by the Antonie equation			
	$lnP^s = 13.8587 - \frac{2911.32}{T - 56.56}$		5	CO3
	where P^s is in kPa and T is in K. Calculate			
	(a) The vapor pressure of n-heptane at 325 K			

	(b) The normal boiling point of n-heptane		
	Section-C (2Q x 15M = 30 M)		
6.	The dry bulb temperature and dew point of ambient air were found to be 302 K and 291 K respectively. The barometer reads 100.0 kPa absolute. The vapor pressure of water at dew point is 2.0624 kPa. Compute (a) the molar humidity (b) the absolute humidity (c) the percent relative humidity (d) the percent saturation (e) the humid heat		CO3
7.	Pure naphthalene is fed to a jacketed heater at 32°C and is vaporized at atmospheric pressure by condensing Dowtherm-A vapors in a jacket at 1.15 kg/m ² ($T_{sat}=260^{\circ}C$ and latent heat of vaporization is 68.6 kcal/kg). Assume no subcooling of vapors. Calculate the quantity of Dowtherm-A condensed per 10 kg of naphthalene evaporated. Boiling point: 218°C Melting point: 80°C Latent Heat of Vaporization: 75.5 kcal/kg Latent Heat of Fusion: 36 kcal/kg Use the average C_p of solid is given by : $C_s=0.28+0.0011T$ kcal/kg °C Use the average C_p of liquid is given by: $C_1=0.35+0.0008T$ kcal/kg °C where T is in °C.		CO4
	Section-D (2Q x 10M = 20 M)		
8.	Estimate the molar volume of CO ₂ at 500 K and 100 bar using the (a) ideal gas equation (b) van der Waals equation The van der Waals constants are $a = 0.364 \text{ N m}^4/\text{mol}^2$ and $b = 4.267 \times 10^{-5} \text{ m}^3/\text{mol}$	10	CO3
9.	Final Purification stage in the preparation of vitamins from natural sources requires centrifuging and continuous filtration as depicted in figure. Determine the flow rate of recycle stream. Recycle, 0.4 kg vitamin/kg water	10	CO4

Figure: Psychrometric Chart for air-water vapor system at 1 atm pressure

