	۲.			_	
10	я	п	n	μ	•

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Proteomics and protein engineering Semester : 3rd

Program: B.Tech. Biotechnology Duration : 3 Hours

Course Code: HSBT2002 Max. Marks: 100

Instructions: All questions are compulsory

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q1	Which of the following is correct about free energy change?	1.5	CO1
	A. In an exergonic reaction, ΔG is positive		
	B. In an endergonic reaction, there is loss of free energy		
	C. If a reaction is essentially irreversible, it has a high positive ΔG		
	D. If ΔG is negative, the reaction proceeds spontaneously with a loss		
	of free energy		
Q2	Energy can neither be created nor be destroyed is	1.5	CO1
	A. 1 st law of thermodynamics		
	B. 2 nd law of thermodynamics		
	C. 3 rd law of thermodynamics		
	D. Zeroth law of thermodynamics		
Q3	Folding of protein's secondary structure is associated with	1.5	CO1
	A. Increase in entropy		
	B. Decrease in entropy		
	C. No change in entropy		
	D. None of the above		
Q4	Beer Lambert's law gives the relation between which of the	1.5	CO1
	following?		
	A. reflection radiation and concentration		
	B. Scattered radiation and concentration		
	C. Energy absorption and concentration		
	D. Energy absorption and reflected radiation		
Q5	Phosphorescence mainly results from	1.5	CO2
	A. Internal conversion		

	B. Vibrational relaxation		
	C. Intersystem crossing		
	D. All of the above		
	B. Thi of the doore		
Q6	Fluorescence quenching is	1.5	CO2
	A. Conversion of fluorescence to phosphorescence		
	B. Enhancement of fluorescence		
	C. Absence of fluorescence		
	D. Repression of fluorescence		
Q7	A and B are two enentiomeroc helical peptides. Their chirality can	1.5	CO2
	be determined by recording their		
	A. Circular dichroism spectroscopy		
	B. UV spectroscopy		
	C. Fluorescence spectroscopy		
	D. Edman sequencing		
Q8	when the absorption intensity of a compound is decreased it is	1.5	CO2
	called		
	A. Redshift		
	B. Blueshift		
	C. Hypochromic shift		
	D. Hyper chromic shift		
Q9	Select one of the following that is not correct	1.5	CO3
	A. Enzyme lower activation energy of a reaction		
	B. The presence of an enzyme has no effect on ΔG°		
	C. Covalent catalysis is employed by some enzymes to provide an		
	alternative reaction pathway		
	D. Enzyme often lower the activation energy by destabilizing		
	transition state intermediates		
Q10	Which of the following is true about Michaelis-Menten kinetics?	1.5	CO3
	A. K _m , the Michaelis constant, is defined as that concentration of		
	substrate at which enzyme is working at maximum velocity		
	B. It describes single substrate enzymes		
	C. K _m , the Michaelis constant is defined as the dissociation constant		
	of the enzyme-substrate complex		
	D. It assumes covalent binding occurs between enzyme and		
	substrate		
Q11	Trypsin hydrolyze a peptide bond in which amino group is	1.5	CO3
	contributed by		
	A. Serine		
	B. Glycine		
	C. Lysine		

	D. Glutamate		
Q12	In SDS-PAGE, separation is based on A. Molecular weight	1.5	CO3
	B. Shape C. Charge D. All of the above		
Q13	When performing a western blot, what is the purpose of adding a secondary antibody? A. Separate the sample from other proteins B. Allow for detection of the protein sample C. Ensure that the primary antibody binds properly to the sample D. Block any interfering noise coming from the membrane	1.5	CO4
Q14	To determine the isoelectric point of a protein, first determine that the gel:	1.5	CO4
	A. Contains a denaturing detergent that can distribute uniform negative charge over the protein surface B. Exhibits a stable pH gradient when ampholytes become distributed in an electric field. C. is washed with an antibody specific to the protein of interest D. None of above		
Q15	For size exclusion chromatography, which of the following is true? A. Large or elongated proteins enter the pores in the beads. B. Small proteins enter the pores in the beads and are eluted later. C. Large or elongated proteins elute from the bottom of the column later. D. Small proteins elute from the bottom of the column first.	1.5	CO4
Q16	Protein phosphorylation occur on which of the following amino acid residues? A. Serine B. Lysine C. Tyrosine D. Tryptophan	1.5	CO4
Q17	Which of the following enzymes do not mediate post-translational modifications? A. Kinases B. Ligases C. Phosphatases D. Helicases	1.5	CO5

Q18	In O-linked glycosylation, monosaccharides bind to the hydroxyl group of which of the following amino acids?	1.5	CO5
	A. Histidine or glycine B. Alanine or tryptophan C. Aspartic acid or glutamic acid D. Serine or threonine		
	B. Serine of uncomine		
Q19	Roughly how many amino acids are there in one turn of an α helix?	1.5	CO5
	A. 1.2 B. 2.4 C. 3.6 D. 4.8		
Q20	Which of the following method is a powerful method for single cell analysis and is also used in protein engineering studies?	1.5	CO5
	A. Western blotting B. PCR C. ELISA D. Flow cytometry		
	B. How eytometry		
	Section B		
	(4Qx5M=20 Marks)		
Q1	Briefly describe the principal forces associated with protein folding.	5	C01
Q2	Why is 2D-Gel electrophoresis required?	5	CO2
Q3	What is Anfinsen hypothesis of protein folding?	5	CO1
Q4	A. What are glycoproteins? (2 marks) B. Briefly mention the chemistry behind maillard reaction. (3 marks)	5	CO3
	Section C (2Qx15M=30 Marks)		<u>'</u>
Q1	A. What is Far- and Near-UV CD? (3 marks) B. Using Morse diagram describe the physical basis for fluorescence and UV-Vis spectroscopy. (5 marks) C. Write the working principle of mass spectrometry. (3 marks) D. Write any two applications of fluorescence spectroscopy. (4 marks)	15	CO1
Q2	A. Describe separation of proteins using size exclusion chromatography. (4 marks) B. Explain the factors that affect column efficiency. (5 marks) C. Define isoelectric focusing? (2 marks)	15	CO2

	D. Write the differences between native PAGE and SDS-PAGE.		
	(4 marks)		
	Section D		
	(2Qx10M=20 Marks)		
Q1	Describe the following post-translational modifications:	10	CO3
	A. S-nitrosylation. (3 marks)		
	B. Ubiquitination (4 marks)		
	C. Acetylation (3 marks)		
Q2	A. What strategies one must adopt to design novel proteins? (5	10	CO4
	marks)		
	B. How do one uses computer to model proteins? (5 marks)		