Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Remedial Mathematics

Course Code: BP106RMT

Semester : I

Program: Int. BMSC Microbiology/N &D/Clinical Research,

BT Biomedical/Biotechnical,

B.Sc. FND/Microbiology/Clinical Research

Duration: 3 Hours

Max. Marks: 100

Instructions: All questions are compulsory

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	If $A = \begin{bmatrix} 2 & 4 \\ a & -5 \\ 3 & d \end{bmatrix}$ and $B = \begin{bmatrix} 2 & b \\ 1 & -c \\ 3 & 2 \end{bmatrix}$ are equal, then the value of	1.5	CO1
	a, b, c, d is:		
	a. $a = 1, b = 4, c = 5, d = 2$		
	b. $a = 1, b = 4, c = -5, d = 2$		
	c. $a = 1, b = 4, c = 5, d = -2$		
	d. $a = -1, b = 4, c = 5, d = 2$		
Q2.	A matrix contains 48 elements then which of the following cannot	1.5	CO1
	be the number of rows:		
	a. 16		
	b. 18		
	c. 8		
	d. 24		
Q3.	Find the cofactor of 3 in the matrix $A = \begin{pmatrix} 2 & 5 & -6 \\ 4 & 3 & 0 \\ 1 & 0 & -2 \end{pmatrix}$	1.5	CO1
Q4.	For matrices $A = \begin{pmatrix} 2 & -3 \\ 0 & 2 \\ 7 & -2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -2 & 0 \\ 5 & 1 & 2 \end{pmatrix}$, which of the	1.5	CO1
	following is the matrix $3(A^T + 2B)$?		
	a. $\begin{pmatrix} 12 & 12 & 21 \\ 21 & -12 & -6 \end{pmatrix}$		
	b. $\begin{pmatrix} 4 & 7 \\ -4 & 4 \\ 7 & 2 \end{pmatrix}$		
	7 2/		

	(12 -12 21)		
	c. $\begin{pmatrix} 12 & 12 & 21 \\ 21 & 12 & 6 \end{pmatrix}$		
	d. The matrix is undefined		
Q5.	The solve of months of months and in solve $(7, 5, 3)$	1.5	CO1
	The value of resultant matrix multiplication $(7 5 3) \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ is:		
	a. 70		
	b. 49		
	c. 15		
	d. 6		
Q6.	Two lines $3x - y + 4 = 0$ and $ax + 2y - 3 = 0$ are parallel, then	1.5	CO2
	a is equal to:		
	a3		
	b6		
	c0.5		
	d. 3		
Q7.	Which point is on the line $3x - 5y - 9 = 0$	1.5	CO2
	a. (-4,-1)		
	b. (1, -2)		
	c. (-3,-2)		
	d. $(-2, -3)$		
Q8.	Which line is parallel to the line $x - 6 = 0$?	1.5	CO2
	a. $x = -2$		
	b. $y = 5$		
	c. y = 2x + 3		
	d. $y - 1 = 0$	4.5	002
Q9.	What is the y intercept of the line $5x - 3y + 30 = 0$?	1.5	CO2
Q10.	What is the slope of the line $-5x + 8y - 2 = 0$?	1.5	CO2
Q11.	If $f(x) = loge^{tanx}$ then $f'(x) = ?$	1.5	CO3
Q12.	Second derivative of <i>cosx</i> is given by:	1.5	CO3
	asinx		
	b. sinx		
	c. cosx		
012	dcosx	1.5	602
Q13.	If $x = \sin\theta$, $y = \cos\theta$, then $\frac{dy}{dx} = ?$	1.5	CO3
Q14.	Evaluate $I = \int \left(x^2 + \frac{2}{x^3} - 7\right) dx$	1.5	CO3
Q15.	$\int 4^x dx = ?$	1.5	CO3
	a. $4^x log 4 + c$		
	b. $\frac{4^x}{\log 4} + c$		
	c. $\frac{4^{x+1}}{x+1} + c$		
	d. none		
Q16.	Laplace transform of <i>t. sinat</i> is given by:	1.5	CO3

	25		1
	a. $\frac{2s}{(s^2-a^2)}$		
	b. $\frac{2s}{(s^2+a^2)}$		
	C. $\frac{2as}{(s^2+a^2)}$		
	d. $\frac{2}{(s^2+a^2)}$		
Q17.	What is the Laplace transform of t^2 ?	1.5	CO3
Q18.	Find the value of $\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$	1.5	CO1
Q19.	If $log_{10}(x-3) + log_{10}x = log_{10}10$ then the value is x is given	1.5	CO1
	by:		
	a. 2		
	b. 1		
	c. 10 d. 5		
Q20.	Define triangular matrix with the help of an example.	1.5	CO1
Q20.	Define triangular matrix with the help of an example.	1.5	COI
	Section B		
	(4Qx5M=20 Marks)		
Attem	ot any 4 questions		
Q 1	Determine the value of x if the distance between the points	5	CO2
	(x,-1) and $(3,2)$ is 5.		
0.2			CO2
Q 2	Find the equation of a line which passes through the point	5	CO2
	$(-2,3)$ and makes an angle of 30° with the positive direction		
	of the x -axis.		
Q 3	Evaluate $\frac{dy}{dx}$ when $y = \cos \sqrt{x} \log \sin x$	5	CO3
Q 4	Evaluate the Laplace transform of $(t^2 + 4t + 2)e^{3t}$	5	CO3
Q 5	Apply the rule of integration by substitution to evaluate	5	CO3
	$I = \int 2x^3 \sqrt{(x^2 + 4)} \mathrm{d}x$		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	The total number of units of three products $P = 8$, $Q =$	15	CO4
	50 & R = 0 that processed by three machines A, B and C is		
	given by the matrix		
	A B C		
	$P \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$		
	$ \begin{array}{c cccc} P & 2 & 2 & 2 \\ Q & 3 & 5 & 7 \\ R & 4 & 2 & -2 \end{array} $		
	Determine the time taken by each machine to process the		
	product P , Q and R .		
	OR		

	In a culture, bacteria increase at the rate proportional to the number of bacteria present. If there are 200 bacteria initially and are doubled in 4 hours, find the number of bacteria present 9 hours later. $(2^{\frac{9}{4}} = 4.76)$	1.7	900		
Q 2	Evaluate the integral <i>I</i> using the method of partial fractions $I = \int \frac{3x - 2}{(x - 1)^2(x + 3)} dx$	15	CO3		
	Section D				
	(2Qx10M=20 Marks)				
Q 1	Find the ratio in which the line $3x + y - 9 = 0$ divides the line	10	CO2		
	segment joining $A(1,3)$ and $B(2,7)$.				
Q 2	Without expanding the determinant show that	10	CO1		
	$\begin{vmatrix} b+c & bc & b^2c^2 \\ c+a & ca & c^2a^2 \\ a+b & ab & a^2b^2 \end{vmatrix} = 0$				
	OR				
	Determine whether the matrix <i>A</i> is invertible or not. If it is				
	invertible then apply adjoint method to find the inverse of				
	matrix A:				
	$A = \begin{bmatrix} 2 & 6 & 3 \\ 4 & -1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$				