7						
	N	•	11	n	Ω	•

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Biochemistry

Program: MSc Microbiology

Course Code: HSMB7008

Semester : 1st

Duration : 3 Hours

Max. Marks: 100

Instructions: All questions are compulsory

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	If ΔG of a reaction is zero:	1.5	CO1
	A. The reaction goes virtually to completion and is essentially irreversible		
	B. The reaction proceeds only if free energy can be gained C. The reaction is exergonic		
	D. The system is at equilibrium and no net change occurs		
Q2	Which of the following about cytochrome C is incorrect?	1.5	CO1
	A. They are hemoproteins that take part in oxidation-reduction reactions		
	B. They are all dehydrogenase enzyme		
	C. They act as electron carriers in the respiratory chain in mitochondria		
	d. They contain iron which oscillates between Fe ³⁺ and Fe ²⁺ during the reaction they participate in		
Q3	If the values of enthalpy change and entropy change is positive, which of the following will be true?	1.5	CO1
	A. Process will be spontaneous at any given temperature		
	B. Process will be spontaneous at high temperature only		
	C. Process will never be spontaneous		
	D. Process will be spontaneous at low temperature only		
Q4	Which of the following molecules produces highest energy on breakdown of its high energy bond?	1.5	CO1
	breakdown of its high energy bond:		
	A. ATP		
	B. Acetyl CoA		

	C. PEP		
	D. ADP		
Q5	Which of the following statements is correct about glucose	1.5	CO2
	metabolism?		
	A. The main product of glycolysis in red blood cells is pyruvate		
	B. Glycolysis requires NADP ⁺		
	C. In glycolysis, glucose is cleaved into two 3-carbon compounds		
	D. Glucagon increases the rate of hydrolysis		
Q6	Which of the following is not a pentose?	1.5	CO2
	A. Ribose		
	B. Xylose		
	C. Fructose		
	D. Ribulose		
Q7	The enzyme aconitase is responsible for	1.5	CO2
	A. polymerization		
	B. degradation		
	C. assembly		
	D. isomerization		
Q8	Fructose 1, 6-biophosphate upon undergoing cleavage	1.5	CO2
	yields:		
	A. Two aldoses		
	B. Two ketoses		
	C. An aldose and a ketose		
	D. Only a ketose		
Q9	α-Linolenic acid is considered to be nutritionally essential in	1.5	CO3
	humans BECAUSE:		
	A. It is an ω 3 fatty acid.		
	B. It contains three double bonds.		
	C. In humans double bonds cannot be introduced into fatty acids		
	beyond the $\Delta 9$ position.		
	D. In humans double bonds cannot be introduced into fatty acids		
	beyond the $\Delta 12$ position.		
Q10	Which one of the following is the major product of fatty acid	1.5	CO3
	synthase?		
	A. Acetyl-CoA		
	B. Palmitate		
	C. Palmitoyl-CoA D. Acetoacetate		
	D. Acetoacetate		

Q11	Which of the following statements about fatty acids is true?	1.5	CO3
	A. Fatty acids with longer chain lengths have a higher melting point		
	than fatty acids with shorter chain lengths.		
	B. Saturated fatty acids have a lower melting point than unsaturated		
	fatty acids. C. Cis double bonds of unsaturated fatty acids cause tighter packing		
	of hydrophobic tails.		
	D. Double bonds in polyunsaturated fatty acids are almost always conjugated.		
Q12	Which characteristic does this lipid share with a wax?	1.5	CO3
	· ·		
	A. Both contain a polar head.		
	B. Both contain three fatty acids.C. Both contain one or more ester bonds.		
	D. Both contain one or more carboxyl groups.		
	J. J		
Q13	Identify the metabolite that does NOT serve as a precursor of a	1.5	CO4
	dietarily essential amino acid:		
	A. α-Ketoglutarate		
	B. 3-Phosphoglycerate		
	C. Histamine		
	D. Aspartate		
Q14	Select the one of the following statements that is NOT	1.5	CO4
	CORRECT:		
	A. Selenocysteine is present at the active sites of certain human		
	enzymes. B. Selenocysteine is inserted into proteins by a posttranslational		
	process.		
	C. Transamination of dietary α-keto acids can replace the dietary		
	essential amino acids leucine, isoleucine, and valine.		
	D. Conversion of peptidyl proline to peptidyl-4-hydroxyproline is		
	accompanied by the incorporation of oxygen into succinate.		
Q15	Identify the amino acid that is the major contributor to the transport	1.5	CO4
-	of nitrogen destined for excretion as urea:		
	A. Alanine		
	B. Glutamine		
	C. Glycine D. Lysine		
Q16	Which of the following are sulfur containing amino acids?	1.5	CO4
	A. Cysteine and methionine		
	B. Methionine and threonine		

	C. Cysteine and threonine		
	D. Cysteine and serine		
Q17	Which of the following substrates has highest affinity for hexokinase?	1.5	CO5
	A. D-Glucose		
	B. D-Fructose		
	C. D-Galactose D. ATP		
	D. AIF		
Q18	Michaelis and Menten assumed that the overall reaction for an	1.5	CO5
	enzyme-catalyzed reaction could be written as		
	$ \begin{array}{cccc} k_1 & k_2 \\ E + S & \hookrightarrow & LS & \rightarrow & 1 \end{array} $		
	Using this K-1 on, the rate of breakdown of the enzyme-substrate		
	complex can be described by the expression: A) k1 ([Et] - [ES])[S]		
	B) k_{-1} [ES] + k_2 [ES]		
	C) k2 [ES]		
	D) k-1 [ES]		
Q19	Enzymatic activity can be activated or inhibited through non-	1.5	CO5
	covalent		
	interaction of the enzyme with metabolites other than the		
	substrate.		
	This form of control of enzyme activity is termed as:		
	A. Allosteric regulation		
	B. Covalent regulation		
	C. Proteolysis		
	D. Compartmentalization		
Q20	The rate determining step of Michaelis-Menten kinetics is:	1.5	CO5
	A. The complex dissociation step to produce products		
	B. The complex formation step		
	C. The product formation step		
	D. None of the mentioned		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	A. Define high energy compounds. (2 marks)	5	CO1
L			1

	B. Why is ATP hydrolysis accompanied by high free energy changes? (3 marks)		
Q2	A. Explain Glucose-6-Phosphate dehydrogenase deficiency. (2 marks) B. State three important outcomes of hexose monophosphate pathway. (3 marks)	5	CO2
Q3	A. Write the difference in melting points of vegetable oils vs. animal fats. (2 marks)B. Write the three stages in fatty acid synthesis. (3 marks)	5	CO3
Q4	A. How will pKa value of Glutamic acid vary at the surface and bulk of a protein? (2.5 marks) B. Which properties of amino acids affect the structure of proteins? (2.5 marks)	5	CO4
	Section C (2Qx15M=30 Marks)		
Q1	A. Explain the role of pentose phosphate pathway in glutathione peroxidase reaction. (4 marks) B. What is the importance of gluconeogenesis? (4 marks) C. Describe glycolysis. (7 marks)	15	CO2
Q2	A. What is steady state approximation. (3 marks) B. Using above derive Michaelis Menten equation. (5 marks) C. Giving examples, justify enzymes are specific. (7 marks)	15	CO5
	Section D		
Q1	(2Qx10M=20 Marks) A. How do REDOX potential help in determining the electron affinity of a system? (2 marks) B. Calculate the free energy change for the following reaction: (5 marks) $O_2 + NADH + H^+ \rightarrow H_2O + NAD^+$ Given is: $O_2 + 2H^+ + 2e^- \rightarrow H_2O$ $E^0 = +0.815 \text{ V}$ $NAD^+ + 2H^+ + 2e^- \rightarrow NADH + H^+$ $E^0 = -0.315 \text{ V}$	10	CO1
	C. What is phosphorylation potential? (3 marks)		
Q2	A. What is ketogenesis and ketosis? (4 marks) B. How is ketogenesis regulated? (6 marks)	10	CO3